
Prepared f o r  

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
Headquarters 

Washington, D. C.  20546 

D r .  F. F. Marmo, Pro jec t  Director  and 
P r  inc i p a  1 Inves t iga to r  

January 1969 

EXPERIMENTAL AND THEORETICAL STUDIES 
I N  PTANETARY AERONOMY 

Quarter ly  Progress Report 

Covering the  P e r i  1 September 1968 
Thr 

Prepared under Contract No. NASW-1726 



TABLE OF CONTENTS 

Sect ion 

I 

I1 

I11 

I V  

T i t l e  

INTRODUCTION 

SUMMARY OF TECHNICAL WORK PERFORMED FOR THE 
PERIOD 1 SEPTEMBER 1968 THROUGH 30 NOVEMBER 
1968 

A. Laboratory Studies 
1. D r i f t  Velocity Measurements f o r  

2. Laboratory Measurements of WV Photon 
Atmospheric Ions 

S c a t t e r i n g  Cross Sections f o r  Selected 
Atmospheric Gases 
WV Electron Spectroscopy of Atmospheric 
Gases 

Sect ion f o r  XX < 500a 

3 .  

4.  Absorption and Photoionizat ion Cross 

B. Theoret ical  Studies 
1. WV Photon Sca t t e r ing  Cross Sections 

2 .  Mars Lander Experiment - Spec t r a l  
f o r  Hydrogen f o r  XX < 25002 

Photometric Day, Twilight,  and Night 
Airglow 

MISCELLANEOUS 

QUARTERLY PROGRESS REPORT FOR HOURS WORKED I N  
THE PERIOD 1 SEPTEMBER 1968 THROUGH 30 NOVEMBER 
1968 

Page 

1 

2 

2 

7 

17 

26 

26 

40 

82 

84 

85 REFERENCES 

i 



I. INTRODUCTION 

T h i s  second Quarterly Progress Report described t h e  t echn ica l  progress 

achieved from 1 September 1968 through 30 November 1968 under NASA Contract 

No. NASw-1726. S c i e n t i f i c  i nves t iga t ions  accomplished during t h e  repor t ing  

period r e s u l t e d  i n  the  generation of t h e  following papers submitted and/or 

published i n  accredi ted  s c i e n t i f i c  journals,  o r  presented a t  s c i e n t i f i c  meetings. 

Technical Papers Submitted andlor Accepted f o r  Publ ica t ion  

a. Submitted: 

4- Formation of N i n  Nitrogen (P. Warneck) 4 
D i p o l e  Proper t ies  of Molecular Hydrogen 
(G. A. Victor and A. Dalgarno) 

Higher Ioniza t ion  Po ten t i a l s  of Nitr ic  Oxide 
(J. A. R. Samson) 

b. Published: 

Primary Processes i n  the  Photolysis of SO2 
a t  18492 (P. Warneck, e t  a l )  

J. Geo. Res.  

J. Chem. Phys. 

Phys. Letters 

J. Chem. Phys., 
72, 3736 (1968) 

Technical Papers Presented a t  S c i e n t i f i c  o r  Profess iona l  Meetings 

Higher Ioniza t ion  Po ten t i a l s  of Molecules Determined by Photoelectron 
Spectroscopy (J. A. R. Samson) - 21st Annual Gaseous Elec t ronics  Conference, 
University of Boulder, Boulder, Colorado, 16-18 October 1968. 

I n  Section SI, t echn ica l  summaries are presented on t h e  work performed 

during t h e  cur ren t  repor t ing  period. Section I11 contains b r i e f  summaries of 

technica l  papers presented a t  s c i e n t i f i c  and/or profess iona l  meetings as w e l l  

as o ther  miscellaneous top ic s  of i n t e r e s t  i n  t h e  performance of t h e  cur ren t  

con t r ac t  committments. F ina l ly ,  i n  compliance with the  requirements of t he  

cont rac t ,  an  in t eg ra t ed  tabula t ion  by labor category and grade of t o t a l  hours 

expended i n  the  execution of t h e  contract ,  f o r  t h e  spec i f i ed  repor t ing  t i m e  

i n t e rva l ,  is  included i n  Section I V .  
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11. SUMMARY OF TECHNICAL WORK PERFORMED FOR THE PERIOD 1 SEPTEMBER 1968 
THROUGH 30 NOVEMBER 1968 

The t echn ica l  progress accomplished during t h e  cu r ren t  repor t ing  period 

can be conveniently described i n  terms of t he  two major ca tegor ies  contained 

i n  t h e  statement of work: (A) laboratory s tudies ,  and (B) t h e o r e t i c a l  s tud ie s .  

A. LABORATORY STUDIES 

I n  accordance with t h e  subjec t  work statement, it is required t o  

perform t h e  following laboratory inves t iga t ions  on se l ec t ed  planetary atmos- 

pheric gases: (1) measure d r i f t  v e l o c i t i e s  and ion ic  mobi l i t i es ,  (2) acqui re  

q u a n t i t a t i v e  VW photon s c a t t e r i n g  c ross  sec t ion  da ta  with emphasis on t h e  

s p e c t r a l  regions d isp lay ing  d i s c r e t e  and/or continuous ion iza t ion  and/or 

absorption fea tures ,  (3) measure t h e  k i n e t i c  energies of photoelectrons gen- 

e ra ted  by EW photoionization, ( 4 )  measure t h e  absorption and p h o t o i h i z a t i o n  

c ross  sec t ions  f o r  XX < 5002, (5) acqui re  VW (XX 10502 - 20002) high resolu- 

t i o n  absorption c ros s  sec t ion  da ta  with emphasis on t h e  minor cons t i t uen t s  of 

planetary atmospheres, (6) measure rates of ion-neutral  reac t ions ,  and (7) 

measure t h e  y i e l d  and k i n e t i c  energy of photoionization fragment ions. 

During t h e  cu r ren t  qua r t e r ly  repor t ing  period, the bulk of t h e  lab- 

ora tory  e f f o r t  has been d i r ec t ed  toward accomplishing task  i t e m s  ( l ) ,  (2), (3) 

and ( 4 )  above. 

t h e  order indicated.  

Brief descr ip t ions  of t h e  progress achieved i s  given below i n  

1. D r i f t  Velocity Measurements f o r  Atmospheric Ions 

I n  t h e  course of i nves t iga t ing  d r i f t  v e l o c i t i e s  of N+ ions 2 

formed by photoionization of nitrogen, i t  w a s  found t h a t  when t h e  ion iz ing  

wavelength w a s  7902, t h e  observed d r i f t  v e l o c i t i e s  were i n  exce l len t  agreement 

2 



with da ta  obtained by o the r  experimenters using techniques d i f f e r e n t  from ours;  

however, when t h e  s p e c t r a l  s e t t i n g  of t h e  monochromator w a s  7642, t h e  d r i f t  

v e l o c i t i e s  observed were by about a f a c t o r  of two grea te r .  Simultaneously, 

t he  ion dens i ty  p r o f i l e  observed on the  screen of t h e  osc i l loscope  was no 

longer symmetric, but became skewed, i nd ica t ing  t h e  presence of two groups of 

ions with d i f f e r e n t  v e l o c i t i e s .  

t h e  threshold of N2 formation) only ground state N: ions can be generated. 

A t  7642 e x c i t a t i o n  t o  t h e  f i r s t  v i b r a t i o n a l  level i s  a l s o  possible.  

channel would be s i g n i f i c a n t  i f  an appreciable f r a c t i o n  of t h e  ions were formed 

A t  t h e  wavelength s e t t i n g  of 7902 (close t o  

+ 
This 

by autoioniza t ion. 

764a makes evident 

are endowed with a 

The 

The observation t h a t  two groups of ions are involved a t  

+ t h a t  au to ioniza t ion  is  s i g n i f i c a n t  and t h a t  N2 (v = 1) ions 

higher mobili ty than N2 (v = 0) ions. 

formation of N occurs a t  both wavelengths. The rate 

+ 
+ 
4 

coe f f i c i en t  f o r  t h i s  r eac t ion  had been measured previously with t h e  photoioniza- 

t i o n  technique a t  7642. 

has  been c r i t i c i z e d  as being incons is ten t  with a number of o ther  da ta  i n  t h e  

l i t e r a t u r e .  (v E 1) ions a t  7642 it was 

considered necessary t o  r e - inves t iga t e  t h e  process of N+ formation a t  7902, 

where only ground s ta te  N+ ions are i n i t i a l l y  present. 

Third body k i n e t i c s  were observed. This observation 

+ 
2 I n  view of t h e  p a r t i c i p a t i o n  of N 

4 

The d e t a i l s  of t h e  2 

r e s u l t s  and t h e i r  implications are given i n  t h e  present s e c t ' b n  i n  the  f d r m  of 

a paper submitted f o r  publ ica t ion  i n  t h e  Journa l  of Geophysical Research. 

I n  a recent  comment concerning a discussion") of atmosphere 

ion-neutral  r eac t ion  rates, Varney(2) objected t o  l i s t i n g  the  formation of 

N via t h e  a s soc ia t ion  4- 
4 + + N2 + N2 + Nlt 
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as a th ree  body reac t ion ,  and he  c i t e d  experimental r e s u l t s  which ind ica ted  

t h a t  i t  proceeds as a two body process. Spec i f ica l ly ,  t h e  a f t e r  glow da ta  

' of F i te ,e t  al;('l)the mass spectrometer r e s u l t s  of Saporoschenko; (3) and a 

v a r i e t y  of d r i f t  experiments (4' 5'6) have ind ica ted  a d i r e c t  two-body a s soc ia t ion  

whereas t h e  more recent  photoionization mass spectrometer experiments by 

Warneck") and t h e  l o w  pressure  e l ec t ron  impact mass spectrometer observations 

by Asundi, Schulz and C h a n t r ~ ' ~ )  displayed t h i r d  order k i n e t i c s .  Since t h e  

discrepancy is ser ious ,  w e  have performed a new set of experiments with t h e  

photoionization technique, following t h e  suggestions by Varney(*) t h a t  t h e  

parameter E/p, t h e  r a t i o  of t he  e l e c t r i c  f i e l d  s t r eng th  t o  the  pressure,  be 

kept constant i n  t h e  ion  source so t h a t  t h e  energy of t h e  r eac t ing  ions remains 

unchanged. The new r e s u l t s  and t h e i r  implications are the  top ic  of t h i s  note. 

I n i t i a l l y ,  t h e  former r e s u l t s  with constant E and varying p 

were v e r i f i e d ,  using f o r  t h e  production of N' r a d i a t i o n  centered a t  7648, as 2 

described previously!') Since t h i s  permits t h e  production of v i b r a t i o n a l l y  

exc i ted  n i t rogen  ions, t h e  new experiments were performed a t  7908, near t h e  

threshold of n i t rogen  ion iza t ion ,  where t h e  formation of excited nitrogen 

ions is  precluded. A t  7902 t h e  measured d r i f t  v e l o c i t i e s  of  N' agreed w e l l  

with those reported i n  t h e  l i t e r a t u r e ,  (6'9) whereas t h e  d r i f t  v e l o c i t i e s  a t  

7642 were by a f a c t o r  of two higher, presumably due t o  t h e  presence of a con- 

s ide rab le  por t ion  of v i b r a t i o n a l l y  exc i ted  n i t rogen  ions formed by autoioniza- 

t ion .  

of experiments f o r  which E/p w a s  he ld  constant f o r  var ious  f i e l d  s t r eng ths  and 

pressures;  and i n  another series of experiments f o r  which t h e  pressure  w a s  

I-  

I-  
4 Rate c o e f f i c i e n t s  f o r  N formation were determined a t  7908 i n  a series 
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var ied  while t h e  f i e l d  s t r eng th  w a s  he ld  constant bu t  d i f f e r e d  f o r  each set of 

values. 

ecu lar  rate constant similar t o  t h a t  found previously, (2) thereby demonstrating 

t h i r d  order k ine t i c s .  Moreover, t h e  t h i r d  order ra te  c o e f f i c i e n t s  derived from 

A l l  observations showed a pressure  dependence of t he  derived bimol- 

a l l  these  experiments agree  wi th in  t h e  experimental e r ro r ,  t h e  va lue  being 

k = (4 .4  - + 0.6) x lom2' cc /molecule 2 2 sec. Accordingly, t h e  v a r i a t i o n  wi th  

pressure  is  due t o  t h e  inf luence  of t h e  t h i r d  body and not due t o  a v a r i a t i o n  

with E/p i n  t h e  region of relative f i e l d  s t r eng ths  covered (8 < E/p < 33 v o l t /  

cm/T!orr). The new r e s u l t s ,  therefore,  corroborate our previous conclusion t h a t  

for t h e  conditions employed i n  t h e  photoionization mass spectrometer an e q u i l i -  

+ + 
2 4 
The ioniz ing  energies employed he re  i n  photoionizing n i t rogen  

brium between N and N i s  not  established. 

are i n  a region w6ere corresponding e l ec t ron  impact  experiments have demon- 

s t r a t e d  N + 
4 formation from n e u t r a l  exc i ted  n i t rogen  via the  process: 

JC 
e + N  2 + N 2 + e  (2) 

N JC + N ~ + N ; + ~  
2 (3)  

+ (7,101 
2' 

I n  view of t h e  knowledge t h a t  i n  t h e  wavelength region 6852 - 
8502 t h e  absorption spectrum of n i t rogen  i s  a t  least p a r t i a l l y  d i sc re t e ,  and 

t h a t  photoionization e f f i c i e n c i e s  are less than unity,  t h e  formation of excited 

occurring i n  addi t ion  t o  N' formation from N 4 

ni t rogen  molecules is c e r t a i n  t o  occur a l s o  i n  t h e  present experiments. A l -  

though t h e  exc i ted  states reached by W r a d i a t i o n  and by e l ec t ron  impact are 

not necessa r i ly  t h e  same, it is clear t h a t  allowance must be made f o r  t h e  

p o s s i b i l i t y  of r eac t ion  (3) p a r t i c i p a t i n g  i n  

meter experiments. However, no experimental 

t h e  photoionization mass spectro- 

evidence has  been found f o r  any 
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occurrence of t h e  process. 

+ energies below, (Le. a t  wavelengths above) t h e  onse t  of N formation - i n  2 

con t r a s t  t o  t h e  e l ec t ron  impact r e s u l t s ,  and approximately t h e  same rate of 

N 

where t h e  ion iza t ion  e f f i c i ency  is  nearly unity.  Thus, while r eac t ion  (3) 

cannot be e n t i r e l y  precluded, i t  does not appear t o  occur t o  a s i g n i f i c a n t  

ex ten t  i n  t h e  present  experiments. It is  concluded t h a t  t h e  observed forma- 

t ion  of N is due predominantly t o  r eac t ion  (1) i n  its termolecular mode, i n  

agreement with our earlier conclusion. 

Spec i f ica l ly ,  no N+ formation was  de tec ted  a t  4 

+ 
4 formation as a t  7908 was  observed when t h e  wavelength w a s  set t o  6858, 

+ 
4 

(2) 

There remains t o  explain t h e  discrepancy a r i s i n g  from the  various 

Evident- 

+ 
4 

data  i n  the  respec t  t o  t h i r d  or second order  k i n e t i c s  of N+ formation. 

ly, t h i s  problem i s  connected with t h e  observation t h a t  a t  high E/p values N 

ions  ga in  s u f f i c i e n t  energy i n  t h e  f i e l d  t o  d i s s o c i a t e  upon c o l l i s i o n .  Mass 

spec t romet r ica l ly  i d e n t i f i e d  ion t r a n s i e n t s  i n  d r i f t  tubes are near ly  i d e n t i c a l  

f o r  N and N when E/p is  high, demonstrating t h a t  a rap id  equilibrium between 

the  two spec ies  i s  achieved. (679)  

i e n t s  are w e l l  separated even though a s i g n i f i c a n t  N 

I n  t h i s  region, therefore,  a r a p i d  interchange i s  not operative.  The low 

f i e l d  region is  w e l l  s u i t e d  t o  s tud ie s  of r eac t ion  (1) and i n  t h i s  region, 

t h e  formation of N is t h i r d  body dependent. On t h e  o ther  hand, i n  t h e  high 

f i e l d  region, r eac t ion  (1) is i n  equilibrium with t h e  d i s soc ia t ion  of N+ so 4' + t h a t  i n  t h i s  case t h e  abundance of N w i l l  depend only l i n e a r l y  on t h e  n i t rogen  4 
pressure. 

4' deduced (3'6911) t h e  high f i e l d  conditions favored e q u i l i b r a t i o n  of N: and N 

The mass spectrometer r e s u l t s  of Asundi, Schulz and C h a n t r ~ ' ~ )  provide d i r e c t  

4 

+ + 
2 4 

I n  low f i e l d s ,  however, t h e  two ion t rans-  

- N conversion occurs. + +  
2 4  

+ 
4 

It appears t h a t  i n  those cases where bimolecular N+ formation was 
+ 4 
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evidence f o r  such an  in t e rp re t a t ion .  

2. Laboratory Measurements of VW Photon Sca t t e r ing  Cross Sections 
for Selected Atmospheric Gases 

For t h e  discussion of laboratory measurements on t h e  molecular 

s c a t t e r i n g  of VW r a d i a t i o n  by s p e c i f i c  gases, it i s  convenient t o  express the  

phenomenon i n  t h e  form of t h e  following equation: 

I n  t h i s  equation, t h e  t e r m  @e dw represents  t h e  number of photons sca t t e red  

per  second i n t o  t h e  s o l i d  angle, dw, observed a t  an angle, 0, t o  an inctident 

unpolarized photon beam of intensity,@. I n  addition, N is  t h e  molecular number 

density, V represents  t h e  s c a t t e r i n g  volume, and A t he  photon wavelength. 

(n2-1) term represents  t h e  r e f r a c t i v e  index of t h e  gas, and pn is  t h e  polar iza-  

t i o n  f a c t o r  of s c a t t e r e d  l i g h t  i n  exc i t a t ion  by unpolarized l i g h t .  

s p e c i f i c  cases of 8 = 90' and 0 2: 54'44', Equation ( 4 )  assumes the following 

The 

For t h e  

forms : 

Thus, f o r  t h e  case of purely symmetric molecules (i .e. ,  M 4 ,  CCj4, etc.) and 

atoms (Le.,  A, He, Kr, etc.) p 0 so t h a t  n "  5 @ 0 7  4 -  

I n  a d e t a i l e d  discussion given previously, ( see  Quarterly 

Progress Report #ll under NASA Contract No. NASW-1283, November, 1967) it was  

7 



demonstrated t h a t  t h e  simple r e l a t i o n s h i p  shown i n  Equation (7) i s  convenient 

t o  employ as a c a l i b r a t i o n  f e a t u r e  i n  t h e  laboratory measurement of t h e  p - 
values. Furthermore, t hese  r e l a t ionsh ips  can be employed as a convenient 

representa t ion  f o r  comparing experimental measurements with a v a i l a b l e  t h e o r e t i c a l  

n 

cr -values without p r i o r  knowledge of t h e  ind iv idua l  p 
S n 

For t h e  cases wherein pn 

t e r m .  

0, t h e  following expressions obtain:  
-~ 

n 4 + 2p 
= R  

@54O 
@ o  90 3 + 3Pn 
- 3 :  

and - 
3 R  - 4 

, 2 - 3R Pn = 

On t h i s  bas i s ,  then, i t  would be appropr ia te  t o  design a s c a t t e r i n g  chamber 

wherein the  @54/@90 - r a t i o  could be measured i n  order t o  minimize any system- 

a t i c  e r r o r  involved. A t  t h i s  po in t  it is important t o  emphasize t h a t  t h i s  

r e l a t i o n s h i p  holds only f o r  t he  case where t h e  inc ident  r a d i a t i o n  is  completely 

unpolarized. However, owing t o  t h e  f a c t  t h a t  i n  t h e  present experimental 

configuration a g ra t ing  i s  involved, i t  tu rns  out t h a t  t h e  inc ident  r a d i a t i o n  

is  indeed polarized. Furthermore, t h e  measurement of t h e  degree and sense of 

po la r i za t ion  is  d i f f r icu l t  t o  a s c e r t a i n  experimentally i n  t h i s  WV region. 

i t  would appear tha t  t h i s  would c o n s t i t u t e  a s i g n i f i c a n t  b a r r i e r  f o r  acqui r ing  

Thus, 

laboratory crs and/or p -values. 

bas i s  of a d d i t i o n a l  ana lys i s  described below t h i s  d i f f i c u l t y  can be eliminated 

However, i t  w i l l  be demonstrated t h a t  on t h e  n 

by employing a unique experimental configuration for t h e  s c a t t e r i n g  chamber. 

Spec i f i ca l ly ,  it w i l l  be demonstrated t h a t  t o  obta in  cr -values without a p r i o r  

knowledge of t h e  pn-value, s ca t t e r ed  r a d i a t i o n  should be observed i n  t h e  unique 

pos i t i on  of 54'44' with respec t  t o  a coordinate axis or ien ted  such t h a t  t h e  

S 

inc ident  r ad ian t  energy i s  along t h e  y-axis and a t  t h e  same t i m e  t h e  x or z-axis 

is  p a r a l l e l  t o  t h e  major or minor d i r e c t i o n  of po lar iza t ion .  Also, a second 
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observation performed a t  another angle  y i e l d s  t h e  p -value i t s e l f .  n 

For t h e  present purpose i t  is  convenient t o  express the  t o t a l  

s c a t t e r i n g  c ross  sec t ion  f o r  r ad ian t  energy 1 inc ident  on a volume element 
0 

V or p a r t i c a l  dens i ty  N as follows: 

I 
(7 = -  

s IoNv 

where I is  t h e  t o t a l  r ad ian t  energy 

? (10) 

sca t te red .  Experimentally, de t ec to r s  can 

in t e rcep t  only a small f r a c t i o n  of t h e  t o t a l  s ca t t e r ed  r ad ian t  energy. 

it i s  necessary t o  know t h e  dependence of t h e  sca t t e red  r a d i a t i o n  on t h e  angle 

of observation, on t h e  anisotropy of t h e  molecules, and on t h e  degree of polar- 

i z a t i o n  of t h e  inc ident  r ad ian t  energy. 

expression f o r  t h e  angular d i s t r i b u t i o n  of t h e  sca t t e red  r ad ian t  energy is  

developed. 

s o l i d  angle can be observed a t  a s p e c i f i c  angle and is  independent of t h e  

degree of po la r i za t ion  of t he  inc ident  r ad ian t  energy. 

Further,  i t  is  shown t h a t  t h e  normal depolar iza t ion  f a c t o r  pn can be determined 

from the r a t i o  of two measurements a t  s p e c i f i c  angles such t h a t  i t  is unnec- 

essary  t o  know t h e  degree of po la r i za t ion  of t h e  inc ident  r a d i a n t  energy. 

is important s i n c e  most monochromators produce p a r t i a l l y  polarized r ad ian t  

energy which varies wi th  t h e  wavelength and po la r i ze r s  are not  r ead i ly  avail- 

a b l e  i n  t h e  vacuum W without producing a series loss i n  i n t ens i ty .  

Thus 

I n  t h e  following d iscuss ion  t h e  general 

It w i l l  be shown t h a t  t h e  average i n t e n s i t y  '5 sca t t e red  per u n i t  
S 

Thus (7 = 4x ys/I0Nv. 
S 

This 

( 12-14) 

I f  t h e  inc ident  r ad ian t  energy induces an  electric moment p i n  

a molecule then t h e  r ad ian t  energy s c a t t e r e d  per u n i t  s o l i d  angle  Is i n  t h e  

d i r e c t i o n  6 w i t h  respec t  t o  t h e  electric moment vec tor  i s  given by 

3 2Tr d p2 sin2e 
Is = 4 x 

9 



where X is t h e  wavelength of t h e  inc ident  r ad ian t  energy and c is  the  ve loc i ty  

of l i gh t .  

is  c a l l e d  t h e  p o l a r i z a b i l i t y  of t h e  molecule and E is t h e  magnitude of t h e  

The induced electric moment is usua l ly  w r i t t e n  as p = a!E, where CY, 

electric vector.  

(c/8fi)E2. 

of t h e  inc ident  beam i n  r e l a t i o n  t o  t h e  a x i s  of symmetry of t h e  molecule. 

With t h e  u n i t s  used here  t h e  r ad ian t  energy is  equal t o  

I n  general, t h e  p o l a r i z a b i l i t y  of a molecule depends on t h e  d i r e c t i o n  

If 

t h e  electric vec tor  of an inc ident  plane polarized beam is  para l le l  t o  one of 

these axes t h e  induced moment along t h e  axis v i b r a t e s  p a r a l l e l  t o  t h e  incident 

vector.  I f  viewed a t  r i g h t  angles t o  t h e  inc ident  beam and t h e  e l e c t r i c  vec tor  

t h e  sca t t e red  r ad ian t  energy w i l l  a l s o  be plane polarized. However, i f  t h e  

e l e c t r i c  vec tor  i s  not  p a r a l l e l  t o  any of t h e  p r i n c i p a l  axes it w i l l  induce 

moments along each of t h e  axes and t h e  sca t t e red  r a d i a n t  energy has  been 

depolarized by t h e  an i so t rop ic  molecules. 

a t  random it is  necessary t o  compute t h e  average va lue  of p 

Since t h e  molecules w i l l  be or ien ted  

2 i n  order t o  de- 

termine t h e  i n t e n s i t y  of t h e  r ad ian t  energy sca t te red .  

Consider a n  inc ident  beam of p a r t i a l l y  polarized r ad ian t  energy 

t o  be t r ave l ing  along t h e  y-axis of a Cartesian coordinate system x, y, z 

with t h e  principal: d i r e c t i o n  of po la r i za t ion  i n  t h e  z -d i rec t ion  and wi th  t h e  

o ther  planes of po la r i za t ion  d i s t r i b u t e d  symmetrically about t h e  z-axis. This 

is  equivalent t o  two beams polarized i n  t h e  x and z-d i rec t ions  with electric 

vec tors  E and E . L e t  t h e  components of p along these  axes be px, p , and 
X Z Y 

2 2  2 The values of px, p , and p , are propor t iona l  t o  t h e  i n t e n s i t y  of t h a t  PZ. Y z 

p a r t  of t h e  sca t t e red  beam i n  which t h e  v ib ra t ions  are r e s t r i c t e d  t o  the  x, 

y, and z d i rec t ions ,  respec t ive ly .  The average va lues  of t h e  components have 

10 



been ca lcu la ted  (see f o r  example Bhagavantam (I5)) and are given as follows 

i n  terms of t h e  p o l a r i z a b i l i t i e s  A, B, and C along the  axes of symmetry of 

t h e  molecule. 

2 1 2  - r E X * [ $(A2 + B2 + C2) + g ( A B  + BC + AC)] + EZ [=(A + B2 + C2 - AB-BC-AC)] 

- 2  2 
Py, = + [ 15 

PX 
(12) 

(13) A ( A 2  + B2 + C2 - AB - BC - AC)] 

2 2 2  2 2 1 2 2 2  - PZ " z E Z [ (A +B W ) + j$AB+BC+AC)] + Ex [=(A +B SC -AB-BC-AC)] (14) 

1 
3 Defining t h e  mean p o l a r i z a b i l i t y  as a0 = - (A 4- B 4- C), t h e  anisotrWY Of 

2 2  + B the  molecule as y2 = A 

we obta in  

2 = 3 E  - 2  
PX 0 

pY 

PZ 

- 2 = 3 E o  2 

- 2  2 = 3 Eo 

where pn 5: 6y2/45a 0 + 7 ~ ~ ) .  

f a c t o r  and is  zero when y T 
2 

symme trica 1. Phy s ica l l y  , it 

2 2  
Y' 

-I- C2 - AB - BC - AC, g = Ex/EZ, and Eo2 = Ex+E 

This va lue  is c a l l e d  t h e  normal depolar iza t ion  

0, t h a t  is, when t h e  molecule is  pe r fec t ly  

is defined f o r  inc ident  unpolarized r ad ian t  

energy as t h e  r a t i o  of t he  i n t e n s i t y  of t h e  sca t t e red  r ad ian t  energy polar ized 

i n  t h e  y-direct ion t o  t h a t  polar ized i n  t h e  z -d i rec t ion  when viewed along t h e  

x-axis. 

Ex = E . 
r e l a t i o n  P = (I-g)/(I+g) 

Thus, i t  can be obtained from t h e  r a t i o  of Eq. (13) t o  Eq. (14) placing 

The f a c t o r  g i s  r e l a t e d  t o  t h e  degree of po la r i za t ion  P by t h e  
Z 

11 



The i n t e n s i t y  of t h e  sca t t e red  r a d i a n t  energy per u n i t  s o l i d  angle 

i n  t h e  d i r e c t i o n  8, 7, and q (as shown i n  Fig. 1) is given by: 

2 - 2  3 
2s ( F~~ s i n  e + p sin2q + sin2$ Is(QY7,q) = - Y z x4 

- 2  2 - 2  2 - 3 
I- 23Tc 

h4 
(P, - 2  + - 2  Py + - 2  P, - (P, cos e + p cos 7 + pz2 cos2$) 

Y 
(18) 

2 2 2 But t h e  sjm of t h e  d i r e c t i o n  cosines cos 8 + c o s  7) + cos $ = 1. 
2 Subs t i t u t ing  f o r  cos 7 i n  Equation (18), 

- 2  - 2  2 - 2  - 2  2 3 2 s c  - 2  - 2  + p, 1 + 'Py - Pz cos 8 + (Py - P, cos If IS@,7,If)  = - 'PX x4 

That is, I is of t h e  form 
S 

2 2 (e,vYq) = 5 + COS e + 5 COS q , 

23T 4 2 6 (Pn-l> 
- = (r) Io O"o (1%) (6-7pn) 

12 



h v  
L Y 

X 

Figure 1.  Radiant energy scattered in  the direct ion e ,  7, and J I .  
The incident radiation is  along the y-axis .  
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2 where Io = E (c/835) is t h e  t o t a l  inc ident  r ad ian t  energy. 
0 

The average r ad ian t  energy sca t t e red  per u n i t  s o l i d  angle 
S 

can be obtained from Eq. (20) as follows: 

2 2 (5 + cos 8 4- 2 cos 9) dw s 

where t h e  incremental s o l i d  angle  dw = s i n  9. d-$ * d4 and @ is t h e  angular 

d i r e c t i o n  of t h e  sca t t e red  r ad ian t  energy i n  t h e  x - y  plane. From Fig. 1 it: 

can be seen t h a t  cos 0 = s i n  @ * cos @. Subs t i t u t ing  t h e  values for dw and 

cos 8 i n t o  t h e  i n t e g r a l  above and in tegra t ing ,  we obtain:  

That i s  

- 
I = 5 + y 3  + j 3 .  
S 

14 



2 Equating Eqs. (20) and (21) it is  seen t h a t  Ts is obtained when cos 8 = 

cos $ = 1/3. That is when 2 

e = 9 = 7 = 54O44'. (23) 

Prom Eq. (22) aO2 is proport ional  t o  the sca t t e red  i n t e n s i t y  and hence t o  the  

s c a t t e r i n g  cross  sect ion.  Since 5 s 4g fs/(IoNV), w e  have, 
S 

5 2  128 'JI a. (2 4- pn ) 

cr S -[ x4 MJ ] (6 - 7pn) 

Thus t h e  general  expression f o r  t he  angular d i s t r i b u t i o n  of the  sca t t e red  

rad ian t  energy i n  terms of 5 r a t h e r  than a. 2 is  given by, 
S 

( 2 5 )  

It should be noted than when 8 = 7 = Jr I 54'44' t h e  sca t t e red  

i n t e n s i t y  Is is equal to the  average i n t e n s i t y  of the  sca t t e red  r ad ian t  energy 

and is independent of P n  and g. 

8 T Jr then Is is independent of g. 

However, i f  I is  observed a t  angles such t h a t  
S 

I n  measuring the  Rayleigh s c a t t e r i n g  cross  sec t ion  of a molecule 

t h e  sca t t e red  r ad ia t ion  should be observed i n  t h e  d i r ec t ion  54O44' with respec t  

t o  a coordinate a x i s  or iented such tha t  the  incident  rad ian t  energy is  along 

the  y-axis and a t  the  same time the  x or z-axis is p a r a l l e l  t o  t h e  major or 

15 



minor d i r e c t i o n  of po lar iza t ion .  

s c a t t e r e d  per  s o l i d  angle  is  equal 

i n t e n s i t y  is  a l s o  independent of t h e  degree of po la r i za t ion  of t h e  inc ident  

r a d i a t i o n  and depends simply on the  t o t a l  s c a t t e r i n g  c ros s  sec t ion  CT without 

requi r ing  s p e c i f i c  knowledge of t he  normal depolar iza t ion  f a c t o r  P 

required when any o the r  angle  of observation is  used. 

P 

measurement is made wi th  t h e  a d d i t i o n a l  cons t r a in t  e = ~r 

i s  independent of t h e  degree of po la r i za t ion  of t h e  inc ident  r ad ian t  energy. 

From t h e  r a t i o  of t h e  two measurements pn can be found. 

This i s  t h e  d i r e c t i o n  i n  which t h e  i n t e n s i t y  

t h e  average i n t e n s i t y  sca t te red .  The 

S 

as is  n 

To obta in  t h e  value of 

0 a second observation must be made a t  any o ther  angle except 54 44'. I f  a n 

t h e  sca t t e red  s i g n a l  

For example, 

This is of course t r u e  f o r  each of t h e  e igh t  quandrants of t h e  sphere centered 

on t h e  s c a t t e r i n g  volume element. 

two d i f f e r e n t  angles are not  equal t h e i r  r a t i o  can be determined by repea t ing  

theexperiment with a sphe r i ca l ly  symmetrical atom, such as argon, where p 20. 

On t h e  bas i s  of t h i s  ana lys i s  an appropr ia te  scatter chamber i s  cur ren t ly  

being designed and fabr ica ted .  

I f  t h e  volume elements observed a t  t h e  

n 
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3. VW Electron Spectroscopy of Atmospheric Gases 

During t h e  cu r ren t  qua r t e r  t h e  photoelectron spec t r a  of NO, 

GO and GO2 have been obtained a t  wavelengths of 469.82 (26.39eV) and 416.261 

(29.79eV). 

no d e t a i l e d  desc r ip t ion  is given herein.  

The techniques employed have been described previously '16) so t h a t  

least up 

NO a new 

evidence 

Bor CO and CO no new ion iza t ion  p o t e n t i a l s  were observed a t  

t o  t h e  l imi t ing  photon energy (29.79eV). However, f o r  t he  case of 

2 

higher  i on iza t ion  p o t e n t i a l  w a s  observed a t  21.57eV although no 

w a s  found f o r  t h e  a-series a t  14.23eV as reported by Tanaka(17) (an 

ion iza t ion  p o t e n t i a l  w a s  found a t  15.52eV). 

These new r e s u l t s  are t h e  subjec t  matter of a le t ter  e n t i t l e d  

"Higher Ioniza t ion  P o t e n t i a l s  of Ni t r ic  Oxide" (J. A. R. Samson) which has  

been submitted f o r  publ ica t ion  i n  the  Physics Letters. 

i n  t h i s  let ter i s  summarized below. 

The material contained 

The measured r e t a rd ing  p o t e n t i a l  curve of n i t r i c  oxide is 

shown i n  Figure 2. 

46261 (26.84eV) produced by a low pressure  condensed spark discharge i n  a 

c a p i l l a r y  and dispersed by the  GCA McPherson one-half meter Seya type mono- 

chromator. 

a t  46261). 

The ion iz ing  r ad ia t ion  was an A r  IV l i n e  of wavelength 

The band pass of t h e  monochromater w a s  8 (equivalent t o  58mV 

The var ious  s t eps  i n  t h e  curve correspond t o  ion iza t ion  poten- 

t ia ls  of NO. Considerable unresolved v i b r a t i o n a l  s t r u c t u r e  occurs between 

15.7 and 19.5eV. 

p o t e n t i a l  of NO as 9.266eV as determined spec t roscopica l ly  by Dressler and 

Miescher, (I8) and a l s o  by mixing some helium t o  t h e  n i t r i c  oxide gas. The 

The energy scale w a s  ca l ib ra t ed  using the  f i r s t  ion iza t ion  

17 
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helium gave a s t e p  a t  24.58eV corresponding t o  i ts  ioniza t ion  po ten t i a l .  

S t a t e s  corresponding t o  t h e  Tanaka p and 7-series l i m i t s  are observed a t  t h e  

appropr ia te  energies. No state is observed a t  t h e  a-series l i m i t  (14.15eV). (17) 

However, a level is observed a t  15.67eV. This level has a l s o  been seen by 

o the r s  us ing  photoelectron spectroscopy with t h e  5842 l i n e  (21.22eV). 

It has  been suggested t h a t  t h e  t r a n s i t i o n  p robab i l i t y  f o r  ion iz ing  a s ta te  a t  

(19-21) 

t h e  adseries l i m i t  could be exceedingly small a t  5842 and hence not observed. (22) 

However, i n  t h e  present work a search f o r  a s t e p  i n  t h e  r e t a rd ing  p o t e n t i a l  

curve a t  t h e  a-series l i m i t  w a s  made a t  a v a r i e t y  of wavelengths sho r t e r  than 

8 3 d  (14.87eV), but none was found. It would appear, therefore,  t h a t  t h e  

i n t e r p r e t a t i o n  of t he  Ot-series asRydberg terms leading t o  an  excited s ta te  

NO is  incor rec t .  4- 

From t h e  da ta  i n  Figure 2, i t  is  evident t h a t  a new, previously 

unreported ion iza t ion  p o t e n t i a l  i s  observed a t  21.72eV and a weaker one a t  

23.1eV. 

observations, namely, 30eV. An ion iza t ion  p o t e n t i a l  a t  approximately 22eV 

has  r ecen t ly  been observed by Price.  

No o the r  exc i ted  states were observed up t o  the  l i m i t  of t h e  present 

(21) 

4 .  Absorption and Photoionization Cross Sections f o r  hX < 5002 

To perform s tud ie s  of t h e  i n t e r a c t i o n  of r ad ia t ion  with a 

planetary gas a t  wavelengths below 5002 ( t a sk  i t e m  4) it i s  necessary t o  use  

a grazing incidence vacuum monochromator w i t h  a s u i t a b l e  l i g h t  source. During 

t h e  cur ren t  quar te r  t h e  f i r s t  spectra w e r e  obtained on t h e  VW grazing incidence 

monochromator designed and constructed under t h e  present program. Details of 

i t s  opera t iona l  parameters and a reproduction of t h e  spectrum of atomic n i t rogen  

i s  given i n  t h i s  repor t .  
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The cons t ruc t ion  of t he  monochromator w a s  based on t h a t  described 

The p r inc ip l e  of operation i s  as follows (see Figure 3): 

The l i g h t  source is  maintained a t  a f ixed  d i s t ance  from t h e  

by Vodar. (23) 

g ra t ing  and t h e  r a d i a t i o n  i s  incident a t  a fixed angle  of incidence. To scan 

the wavelength the gra t ing  moves along the l i n e a r  track towards t h e  exit s l i t  

while t h e  l i g h t  source is constrained t o  follow t h e  t r ack  jo in ing  t h e  entrance 

and e x i t  slits. Because t h e  source and g ra t ing  d i s t ance  is  fixed, t h e  g ra t ing  

and l i g h t  source must be f r e e  t o  r o t a t e  about t h e i r  respec t ive  cen te r s  ( t h a t  

is, t h e  g ra t ing  center  and t h e  entrance sl i t) .  

by t h e  d i s t ance  R separa t ing  t h e  gra t ing  and t h e  exit s l i t  according t o  t h e  

following r e l a t i o n  

The wavelength X is then given 

1 / 2  
1 = d [ s i n  a - (1 - R 2 2  /R )] 

The ns t ruc t iona l  parameters were as follows: 

R = 2.2176 meters 

l / d  = 600 lines/mm 

cx = 84' 

Blaze angle  = 2' 14' 

Blaze wavelength 

a t  01 z 8 4 O  s 169g 

R a t  02 = 9.126" 

A photograph of t h e  f in i shed  instrument is  reproduced from a 

previous r epor t  €or convenience and completeness and is  shown i n  Figure 4 .  

The problem of moving p a r t s  under vacuum w a s  solved by t h e  use of s t a i n l e s s  

20 
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Figure 3 .  Schematic diagram of the  Vodar-type grazing incidence monochromator. 
Wavelength i d e n t i f i c a t i o n  is obtained from the  r e l a t i o n :  

, 2 2 %  X = [sincx - (1-1 /R ) 3 .  

21  



steel bellows which were capable of expanding and cont rac t ing  over a t o t a l  

d i s tance  of 17". The bellows can be seen i n  Figure 4. The sagging of t h e  

bellows occurs when t h e  instrument i s  a t  atmospheric pressure, but under vacuum 

conditions t h e  bellows becomesstraight and usable. 

The instrument is  capable of covering t h e  wavelength range from 

0 to 6008. 

movement along R, whereas a t  5842 t h e  d ispers ion  i s  50a/inch. 

of 40 microns a wavelength r e so lu t ion  of 0.42 has been obtained over t h e  f u l l  

range of t h e  instrument. 

At 02 t h e  d ispers ion  of t h e  instrument is  208/inch i n  terms of a 

With s l i t  widths 

The var ious  l i g h t  sources i n  u s e  a t  GCA were s tudied  f o r  t h e i r  

sho r t  wavelength capab i l i t y .  An immediate discovery w a s  t h e  f a c t  t h a t  t h e  i m -  

por tan t  H e  I 3048 l i n e  w a s  obtained with exce l len t  i n t e n s i t y  from our standard 

DC glow discharge lamp. I n  f a c t ,  t h e  absolu te  i n t e n s i t y  a t  t h e  e x i t  s l i t  w a s  

measured and found t o  be 2.5 x 10 8 photons/sec f o r  40 micron wide slits. 

The high vol tage  spark discharge l i g h t  source w a s  found t o  pro- 

duce a dense l i n e  spectrum down t o  1298. 

on t h e  gas used i n  t h e  source. Usually N2, A r ,  and 0 are used. The discharge 

is so energe t ic  t h a t  it d i s s o c i a t e s  t h e  molecules and produces a l i n e  spectrum 

c h a r a c t e r i s t i c  of t h e  atoms only. 

Figure 5 shows a sec t ion  of t h e  spark spectrum of t h e  source when N 

The s h o r t e s t  u se fu l  l i n e  t o  be observed w a s  an  oxygen impurity l i n e  0 V I  a t  

209.87B. 

shown. This background cur ren t  is  of course absent when t h e  ion chamber is 

used t o  measure cross-sections.  

The p a r t i c u l a r  l i n e s  produced depends 

2 

Typically, l i n e s  of N IV and 0 V I  are observed. 

is  ased. 2 

I n  t h e  f i g u r e  t h e  amplitude of t h e  photomultiplier dark cur ren t  is  

From t h e  measured absolu te  i n t e n s i t i e s  it is clear t h a t  t h i s  

instrument w i l l  be s u i t a b l e  f o r  use wi th  the photoelectron spectrometer f o r  
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Figure 5. Spark spectrum of nitrogen between 125 and 150f2. 
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measuring higher  ion iza t ion  po ten t i a l s .  

t o  mount t h e  photoelectron spectrometer onto t h e  exit s l i t  of t h e  grazing 

incidence monochromator. 

During the  next quar te r  it is planned 
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E. THEORETICAL STUDIES 

I n  accordance wi th  t h e  subjec t  work statement, i t  is required t o  per -  

form t h e  following t h e o r e t i c a l  s tud ies :  (1) calculate photon s c a t t e r i n g  c ross  

sec t ions  f o r  XX < 25002, (2) suggest, evaluate and determine t h e  f e a s i b i l i t y  

of performing d e f i n i t i v e  experiments r e l a t e d  t o  p lane tary  atmospheres, (3) 

examine t h e  q u a n t i t a t i v e  e f f e c t s  of e l ec t ron  cooling i n  a planetary atmosphere, 

( 4 )  ca lou la t e  c ross  sec t ions  assoc ia ted  with ion cooling involving t h e  f i n e  

s t r u c t u r e  bands of atomic oxygen as w e l l  as t h e  r o t a t i o n a l  e x c i t a t i o n  of atmos- 

pheric molecules, (5) eva lua te  the  r o l e  of meteoric deb r i s  i n  planetary atmos- 

pheres, and (6) perform ca lcu la t ions  on t h e  na tu re  and i n t e n s i t y  of WV airglow 

i n  planetary atmospheres awing t o  EW-produced photoelectrons. 

The completion of t a sk  items 3 and 4 has been previously reported 

(see Quarterly Progress Report #1) and t h e  r e s u l t s  are discussed i n  a paper 

e n t i t l e d  "The Ef fec t  of Oxygen Cooling on Ionospheric Temperatures", (A. 

Dalgarno, e t  a l )  which has  been submitted for publ ica t ion  i n  Planetary and 

Space Sciences. 

During t h e  cur ren t  repor t ing  period t a s k  i t e m  1 has been completed; 

t h e  r e s u l t s ,  given below i n  subsection 1 a l s o  appear i n  the  form of a paper 

e n t i t l e d  "Dipole Proper t ies  of Moleculax Hydrogen" (G. A. Victor and A. Dalgarno) 

which has  been submitted f o r  publ ica t ion  i n  t h e  Journa l  of Chemical Physics. 

F ina l ly ,  a d d i t i o n a l  e f f o r t  has  been given toward completing t a s k  i t e m  2 wherein 

a Martian Lander experiment is defined and evaluated i n  terms of i t s  s c i e n t i f i c  

p o t e n t i a l ;  t h i s  i s  t h e  subjec t  matter of subsection 2 below. 

1. VLTV Photon Sca t t e r ing  Cross Sect ionsfbr  Hydrogen f o r  XA < 25002 

Approximate v a r i a t i o n a l  ca l cu la t ions  of var ious  d ipole  
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prope r t i e s  of molecular hydrogen have been ca r r i ed  out as a func t ion  of t h e  

wavelength of t h e  inc ident  rad ia t ion .  Because of inadequacies i n  t h e  represen- 

t a t i o n  of t h e  unperturbed and perturbed molecular wavefunctions, t h e  ca l cu la t ions  

f a i l  f o r  wavelengths less than about 2500a. Experimental da ta  on t h e  o s c i l l a t o r  

s t r eng th  d i s t r i b u t i o n s  of molecular hydrogen, supplemented by r e f r a c t i v e  index 

da ta  and sum ru le s ,  can be used t o  cons t ruc t  a model of t h e  complete d ipo le  

spectrum which accura te ly  reproduces d ipole  p rope r t i e s  f o r  wavelengths g rea t e r  

than about 1150a. 

work on t h e  i n e r t  gases and molecular hydrogen (25) and molecular nitrogen, 

The procedures have been applied successfu l ly  i n  e a r l i e r  

(26 1 

though no d i s t i n c t i o n  is  t h e r e  made between p a r a l l e l  and perpendicular t r ans -  

i t i o n s .  Among t h e  p rope r t i e s  which may be inves t iga ted  are the  p a r a l l e l  and 

perpendicular dynamic d ipole  p o l a r i z i b i l i t i e s ,  t h e  molecular anisotropy, t h e  

r e f r a c t i v e  index, t h e  Verdet constant, t h e  Rayleigh s c a t t e r i n g  c ros s  sec t ion ,  

and the  Rayleigh depolar iza t ion  f ac to r .  The model spectrum can a l s o  be used 

t o  c a l c u l a t e  t h e  tensor  components of t h e  van der  Waals c o e f f i c i e n t  for a p a i r  

of i n t e r a c t i n g  hydrogen molecules and t o  c a l c u l a t e  t h e  average e x c i t a t i o n  

energy t h a t  con t ro l s  t h e  absorption of f a s t  charged p a r t i c l e s  i n  hydrogen gas. 

Dipole o s c i l l a t o r  s t r eng ths  have been determined fram measure- 

ments of energy loss of f a s t  e l ec t rons  a t  d i f f e r e n t  s c a t t e r i n g  angles by 

L a s s e t t r e  and Jones, 

The more recent  measurements were taken with a r e so lu t ion  of about .007eV 

(2T) by Geiger, (2s;> and by Geiger and Topschowsky. (29” 

and show v i b r a t i o n a l  s t r u c t u r e  i n  t h e  Lyman and Werner band systems and i n  

higher terms. 

ments of r a d i a t i v e  lifetimes. @‘) 

Dipole o s c i l l a t o r  s t r eng ths  have a l s o  been derived from measure- 

Refractive index da ta  between l855a and 
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5 4 6 s  are a v a i l a b l e  (31) and Bridge 

Rayleigh depolar iza t ion  f a c t o r  €or 

experimental values of wavelengths 

l i s t e d  by Dieke. (33) 

The p a r a l l e l  d ipole  

Eo t o  a state an with energy En is 

2'' n = 2(En 3 - Eo) I 

and Buckingham (32-) have measured t h e  

s c a t t e r i n g  of  laser l i g h t  a t  6328R. 

f o r  t h e  hydrogen molecular spectrum are 

The 

o s c i l l a t o r  s t r eng th  from a s ta te  

defined by 

with energy 
0 

i= 1 

u n i t s  and z i s  t h e  z component of t h e  i where a l l  q u a n t i t i e s  are i n  atomic 

pos i t i on  vec tor  of t h e  ith elec t ron  of t h e  N e l ec t ron  system where the  coordin- 

a te  system i s  r e f e r r e d  t o  t h e  midpoint of t h e  nuclear axis with t h e  z axis along 

t h e  nuclear ax is .  The perpendicular d ipole  o s c i l l a t o r  s t r eng th  i s  defined by 

(29 

where x is  the  x component i n  t h e  same coordinate system. i 

The p a r a l l e l  component of t h e  dynamic d ipole  p o l a r i z i b i l i t y  tensor  

a t  a frequency w for t h e  state CD is  given by 
0 

A n 
(a) = a,, ( w )  = 3 s 2 2  

h (En - Eo) - w 

and t h e  perpendicular component is given by 

where t h e  summations Over n and m i n  (30) and (31) are over a l l  states, 
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including t h e  continuum, f o r  which t h e  r e spec t ive  o s c i l l a t o r  s t r eng ths  do not  

vanish. The r e f r a c t i v e  index i s  given by 

n - 1 = 2gNa(w) 

where N is Avogadro's number and a ( w )  is t h e  trace 

The anisotropy, y(w) is  defined by 

r(N = a,, (w) - c-: (w). 

I f  w e  introduce t h e  summations 

and 
2 S'(k) 4- S"'(k) 

3 S(k) = 

(32) 

(34 1 

t h e  o s c i l l a t o r  s t r eng th  sum r u l e  may be w r i t t e n  

JA 
(36-l 

111 S (0) = S" (0) = S ( 0 )  = N 
- -  

We rep lace  t h e  a c t u a l  o s c i l l a t o r  s t r eng th  d i s t r i b u t i o n s  i n  ( 3 0 )  
: 1  

and (31) by model o s c i l l a t o r  s t r eng th  d i s t r i b u t i o n s  i n  which only a f i n i t e  

number of terms are retained: 

I 
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1 +  I f  The experimental Franck-Condon f a c t o r s  (2@) f o r  t h e  Lyman (X C - B Xu) 

band system were used t o  construct  t h e  f i r s t  16 coe f f i c i en t s  a Four 

add i t iona l  terms were added t o  (37) making M\j ~ 2 0 .  

were i n i t i a l l y  taken from v a r i a t i o n a l  ca lcu la t ions  (24) based on t h e  Weinbaum 

g 

io 

The add i t iona l  values 

wavefunction. 

(28’33’ The first 9 exci ted da ta  on t h e  Werner (X ‘Cf  - C lI ) band system. g U 

v ib ra t iona l  states were included, together  with 4 add i t iona l  t e r m s  from the  

v a r i a t i o n a l  ca lcu la t ions ,  (” making MA =13. The values  of the Werner and Lyman 

band system o s c i l l a t o r  s t rengths ,  and t h e  i n i t i a l  values of ai, wi, ai, wi 

taken from t h e  v a r i a t i o n a l  ca lcu la t ions  were then adjusted t o  bes t  f i t  t he  re- 

f r a c t i v e  index data,  

t h e  measured anisotropy(32) a t  63282. 

I n i t i a l  values of a .  were chosen s imi l a r ly  from the  experimental 
1 

1 

N N 

subjec t  t o  exact ly  reproducing the  sum r u l e  (36) and 
(3115 

The r e s u l t i n g  model o s c i l l a t o r  s t rength  

d i s t r i b u t i o n  reproduces the  dynamic p o l a r i z i b i l i t y  values derived from the  

measurements of t h e  r e f r a c t i v e  index(311) Erom 5 4 6 a  t o  18552 t o  at  worst 0.2% 

and a t  most wavelengths, t o  within 0.1%. 

trum are given i n  Table I-. 

Parameters f o r  our f i n a l  model spec- 
- 
i 

Electron s c a t t e r i n g  data  (282) y i e l d  a value of 

0.25+ - 0.04 f o r  fg and of 0.31-&).04 f o r  f,, t h e  o s c i l l a t o r  s t rengths  of t h e  

Lyman and Werner bands respec t ive ly  

f o r  f and 0.35 f o r  fc. Browne 

f and Ehrenson and Phi l l ipson  

(34 1 
B 

(35-1, 
C 

b 

while our model d i s t r i b u t i o n s  give 0.30 

computed a t h e o r e t i c a l  value of 0.35 f o r  

t h e o r e t i c a l  value of 0.27 f o r  f The B. 
r e f r a c t i v e  index da ta  a t  small wavelengths cannot be accura te ly  reproduced by 

value of f B  and f much below 0.30 and 0.35 respect ively.  C 

Values of t h e  dynamic dipole  p o l a r i z i b i l i t y  and r e f r a c t i v e  index 

f o r  molecular hydrogen a t  se lec ted  wavelengths, derived from the  model o s c i l l a -  

t o r  s t rength  spectrum, are compared i n  Table I1 with t h e  experimental data.  
1 
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TABLE I 

Constants for the Model Molecular Hydrogen Oscillator Strengths 

0.008 1 

0.0144 

0.0297 

0.0459 

0.0648 

0.0774 

0.0819 

0.0882 

0.0882 

0.0864 

0.0801 

0.0630 

0.0558 

0.0459 

0.0369 

0.0315 

0.416 7 

0.4326 

0.2491 

Q1 0034 

0.41096 

0.41697 

0.4228 1 

0.42849 

0.43401 

0.43939 

0. 4446 2 

0.44970 

0.45464 

0.45943 

0.46410 

0.46863 

0.47300 

0.47728 

0.48142 

0.48539 

0.57678 

0.67414 

1.07059 

2.28982 

L 
ai 

0.07508 

0.12180 

0.11655 

0.076 12 

0.04882 

0.02835 

0.01838 

0.016 28 

0.01418 

0.35245 

0.57418 

0.46842 

0.08 940 

i 
i 

W 

0.45173 

0.46223 

0.47213 

0.48142 

0.49014 

0.498 29 

0.5058 1 

0.51272 

0.5 1904 

0.57621 

0.73544 

1.16 207 

2.89711 
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U 1 

TABLF, I1 

Dynamic d ipole  p o l a r i z i b i l i t y  i n  u n i t s  of a! and r e f r a c t i v e  index of H, 

x& - 
00 

6328.0 

5462.3 

4359.6 

4079.0 

4047.7 

3342.4 

2968.1 

2753.6 

2535.6 

2379.1 

2302.9 

1990.5 

1935.8 

186 2.7 

1854.6 

1700.0 

1600.0 

Theory 

a 
- 

5.450 

5.554 

5.591 

5.675 

5.708 

5.713 

5.845 

5.963 

6.056 

6.182 

6.299 

6.368 

6.766 

6.865 

7.017 

7.035 

7.471 

7.872 

a.L - 
4.774 

4.857 

4.886 

4.952 

4.979 

4.982 

5.087 

5.179 

5.253 

5.351 

5.443 

5.496 

5.803 

5.879 

5.995 

6.009 

6.337 

6.636 

a (I - 
6.803 

6.949 

7.001 

7.120 

7.167 

7.173 

7.361 

7.529 

7.663 

7.843 

8.012 

8.111 

8.692 

8.837 

9.062 

9.089 

9.739 

10.354 

(n-l)* 

1.364 ( - 4 )  

1.390(-4) 

1.399 ( -4 )  

1.420(-4) 

1.428 ( - 4 )  

1.429 ( - 4 )  

1.462 ( - 4 )  

1.492(-4) 

1.515 ( - 4 )  

1.547 ( - 4 )  

1.576 ( - 4 )  

1 .593(-4)  

1.693(-4) 

1.718(-4) 

1.756 ( - 4 )  

1.760( -4) 

1.869 ( - 4 )  

1.970(-4) 

Experiment (a) 

a 
- 

5.437 

5.554 

5.582 

5.667 

5.701 

5.705 

5.840 

5.960 

6.055 

6.183 

6.303 

6.384 

6.771 

6.868 

7.017 

7.035 

-- 
-- 

(n-1)* 
i 

1.360(-4) 

1.390 ( - 4 )  

1.396(-4) 

1.418 ( - 4 )  

1.426 ( -4 )  

1.427 ( - 4 )  

1.46 1 ( - 4 )  

1.491 ( - 4 )  

1.5 15 ( - 4 )  

1.547 ( - 4 )  

1.577 ( - 4 )  

1.594(-4) 

1.694(-4) 

1.718(-4) 

1.755 ( -4 )  

1.760(-4) 

-- 
-- 
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1500.0 8.431 7.045 11.204 2.109(-4.) --, -- -- 
1400.0 9.262 7.638 12.509 2.317(-4) -- -- -- --- 
1300.0 10.625 8.573 14.730 2.658(-4) -- -- -- --- 
1215.7 12.765 9.933 18,428 3.194(-4) 12.8 -- -- 3.05 ( - 4 )  

* The number i n  parenthesis  i s  t h e  power of ten  by which the  entry is t o  

by mul t ip l i ed  

(a) 

A 3 my reference ( 3 8 ) ;  

The experimental numbers a r e  derived from the  following sources: 

h = 6328, reference ( 3 2 )  A = 1215.7 (Lyman a) ,  

reference ( 3 6 )  modified as described i n  the  t e x t ;  all other  values,  reference (31). 
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The agreement a t  Lyman alpha (1215.72) between t h e  value reported by G i l l  and 

Heddle, t h e  present  t h e o r e t i c a l  r e s u l t ,  and an earlier t h e o r e t i c a l  estimate 

of 12.8 a i s  excel lent .  However,  G i l l  and Heddle used a depolar iza t ion  f a c t o r  

of 0.014 i n  t h e  ana lys i s  of t h e i r  data .  The use of our more p rec i se  pred ic t ion  

of 0.055 modifies t h e i r  va lue  f o r  In-11 from 3.20 x loo4 t o  3.05 x loa4 and 

t h e i r  va lue  of t he  average d ipole  p o l a r i z i b i l i t y  of 12.8 a3 t o  12.2 ao. 

(3% 

3 
0 

3 
0 

I f  t h e  r o t a t i o n a l  s t r u c t u r e  is  not  resolved, and t h e  inc ident  

wavelength i s  not near  a resonance wavelength, t h e  Rayleigh s c a t t e r i n g  c ross  

(377 sec t ion  is given by 

and the  Rayleigh depolar iza t ion  f a c t o r  f o r  unpolarized inc ident  l i g h t  is  given 

2 6 y(w) 
PkY(W) = 

45y(wI2 + 7y(wI2 
(39) 

Values of t h e  molecular anisotropy y(w) , t h e  Rayleigh s c a t t e r i n g  c ross  sec- 

t i o n  Q (w), and t h e  Rayleigh depolar iza t ion  f a c t o r  p (w) f o r  se lec ted  

wavelengths are given i n  Table 111. 

(1215.7a) are 8.495 a:, 2.35 x 

estimate of re ference  (32) gives. 2.1 x 

lengths,  t h e  anisotropy y(w) increases  more r ap id ly  than t h e  p o l a r i z i b i l i t y  

a(&), so t h a t  t he  depolar iza t ion  f a c t o r  p (w) increases  markedly above i ts  long 

\ wavelength l i m i t  of about 0.018 t o  a va lue  of 0.055 a t  Lyman alpha, where it 

s i g n i f i c a n t l y  modifies t he  i n t e r p r e t a t i o n  of measurements of photon sca t t e r ing .  

b Y  b Y  
The t h e o r e t i c a l  values  a t  Lyman alpha 

c m  , and 0.0552 respect ively,  while t he  

A t  sho r t e r  wave- 

2 

U Y  ' 
cm2 f o r  Q 

WY 

(36) 

The Verdet constant  f o r  molecular hydrogen is c lose ly  approxi- 

(39) mated by t h e  Becquerel formula 

(40 1 6 dn 
dh 

V = 1.007 x IO 1- 

34 



TABLE I11 

The anisotropy, Rayleigh cross section and depolarization factor, and the 

Verdet constant (in units of microminutes/oersted-centimeter-atmosphere) 

fo r  molecular hydrogen 

UQ - 
m 

6328.0 

546 2.3 

4359.6 

4079.0 

4047.7 

3342.4 

2968.1 

2753.6 

2535.6 

2379.1 

2302.9 

1990.5 

1935.8 

186 2.7 

1854.6 

1700.0 

1600.0 

1500.0 

1400.0 

1300.0 

1215.7 

3 Y (a,) - 
2.029 

2.092 

2.115 

2.168 

2.188 

2.191 

2.274 

2.350 

2.410 

2.492 

2.569 

2.615 

2.889 

2.958 

3.067 

3.080 

3.401 

3.710 

4.159 

4.871 

6.158 

8.495 

PRaY 
0.018 1 

0.0185 

0.0187 

0.0190 

0.0192 

0.0192 

0.0197 

0.0202 

0.0206 

0.0211 

0.0216 

0.0219 

0.0236 

0.0241 

0.0247 

0.0248 

0.0268 

0.0286 

0.0313 

0.0354 

0.0426 

0.0552 
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2 
QRav(em 1 

0 

5.69(-28) 

1. M(-27) 

2.64(-27) 

3.48 (-27) 

3.60(-27) 

8.11(-27) 

1.36 (-26) 

1.89(-26) 

2.75(-26) 

3.68 (-26) 

4.29(-26) 

8.70(-26) 

1.00(-25) 

1.22(-25) 

1.25(-25) 

2.00(-25) 

2.84(-25) 

4.24(-25) 

6.80(-25) 

1.22(-24) 

2.35(-24) 

V - 
0 

5.35 

7.29 

11.8 

13.7 

13.9 

21.6 

28.6 

34.5 

42.6 

50.6 

55.3 

85.3 

93.2 

106. 

108, 

147. 

188. 

253. 

363. 

591. 

1070. 



i n  u n i t s  of microminutesloersted-centimeter-atmosphere. Values of t h e  Verdet 

constant a t  var ious  wavelengths ca l cu la t ed  from t h e  model o s c i l l a t o r  s t r eng th  

d i s t r i b u t i o n s  are given i n  Table 111. 

and 43602 r e spec t ive ly  agree with t h e  measured values(38) of 7.06 and 11.4 t o  

with i n  t h e  exp er imen t a  1 er Tor. 

Our values  of 7.29 and 11.8 a t  5 4 6 a  

The o s c i l l a t o r  s t r eng th  moment func t ions  S" (k), S I (k) and S(k), 

defined by equation (35), provide use fu l  information on molecular s t ruc tu re ,  

and many p rope r t i e s  of i n t e r e s t  can be expressed i n  terms of them. 

t h e  moment functions f o r  molecular hydrogen, ca lcu la ted  from t h e  model spectrum 

are given i n  Table "r;J. 

of Kolos and Walniewicz 

and S(4-2) are not of high accuracy because of inadequacies a t  t h e  l a rge  f r e -  

quency p a r t  of t h e  spectrum. The values of Slf(O), S'(0)  and S(0) are exact, 

of course, because t h e  model spectrum w a s  constructed subjec t  t o  t h i s  cons t r a in t .  

Values of 

Values based on t h e  accura te  v a r i a t i o n a l  ca l cu la t ions  

are given f o r  comparison. The values of S"(+2), SL(+2) 

(4d) The r e l a t i o n s  

1 
s (-1) = 2 <Q, 0 

(zl -I- Z * l 2  

(xl + X 2 l 2  

Sll(-2) = d' (w = 0) 

sJ-(-2) = a 1 (w = 0) 

mi 0 

BO> 

give t h e  moments i n  terms of expectation values of c e r t a i n  opera tors  wi th  

respec t  t o  t h e  ground s ta te  wavefunction Q, . Since t h e  values of these  oper- 

a t o r s  are a func t ion  of in te rnuc lear  separation, i n t eg ra t ion  wi th  respec t  t o  

t h e  appropr ia te  v i b r a t i o n a l  wavefunction f o r  t h e  ground state and averaging 

over r o t a t i o n a l  states corresponding t o  t h e  temperature of i n t e r e s t  is necessary. 

0 

Values of SI1(-2), SL(-2) and S(-2) determined by Kolos and Wolniewicz, (40) 

where v i b r a t i o n a l  and r o t a t i o n a l  averaging w a s  e f fec ted ,  agree  very w e l l  with 

36 



TABLE N 

Moment func t ions  of t h e  d ipo le  o s c i l l a t o r  s t r eng th  d i s t r i b u t i o n  f o r  
JC 

mo lecu lar hydrogen 

h'' (k) 

+2 0.82 1.93 1.56(3.693) 

+l 1.214 1.674 1.520 (1.704) 

0 2,000 2.000 2.000 

-1 3.580 (3.541) 2.913 (2,826) 3.135 

-2 6.803 (6.786) 4.774 (4.750) 5.450 (5.429) 

-3 13.48 8.433 10.12 

-4 27.55 15.67 19.63 

?C 
The values i n  parenthes is  are based on the  accura te  v a r i a t i o n a l  ca l cu la t ions  

of Kolos and Wolniewicz. (40 )  

37 



t h e  corresponding model spectrum values. The agreement is less good f o r  

S*(-l), ill where only v i b r a t i o n a l  averaging w a s  done, and f o r  S I (-1), where the  

opera tors  were evaluated only a t  t h e  equilibrium separation. 

The important molecular parameter i n  the  Bethe (42) theory of 

t h e  stopping of high ve loc i ty  charged p a r t i c l e s  i n  molecular hydrogen gas is 

defined by t h e  sum 

The mean e x c i t a t i o n  energy I is  found t o  be 18.6eV, compared t o  previous theo- 

re t ical  estimates of 18.4eV, (4') and 19.5eV. (44) 

The long-range d ispers ion  energy between two hydrogen molecules 

depends upon t h e  o r i e n t a t i o n  of t h e  molecular axes. 

i n  Fig. 6,  t h e  long-range i n t e r a c t i o n  energy i s  

Using t h e  geometry shown 

(45 1 

(CII ,I1 + Ch, 1 - 2Cll ,I) 

(43 1 

[ sine, s ine  - Q ~ )  - 2 ~ 0 s ~  coseb b a 

-6 I V = -R 

2 
+3(c l1 ,~  - C L , ~ )  cos ea 

b 

formula, and simple geometry, t h e  constants (46 1 According t o  t h e  Casimir-Polder 

and C can be expressed as s i m p l e  l i n e a r  combinations of t h e  C,ll , I I  2 CIl ,L' 1,J- 
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Figure 6. Geometry for long-range H2-H2 
interaction potential. 

39 



03 

r 

and 
03 

fl l a L  ( i w )  a , ( i w )  dw 

0 

Upon using t h e  model spectrum, and changing t h e  s ign  i n  t h e  denominator 

of equation (37), t r ivial  ca l cu la t ions  @ld values of 3.861, 1.232, and 2.426 

- ”  

r e spec t ive ly  f o r  CII,  11, , and C,,,&, with an  expected accuracy of about 1%. 

Thus, 

0.241 [ sinQa s ine  b cos (Qa - Qb) - 2cose a cos@ b 1 ’  
2 .  

V = -R 

1-3.582 COS ea 
2 1-3.582 COS eb 

2. Mars Lander Experiment - Spec t r a l  Photometric Day, Twilight, 
and Night Airglow 

I n  Quarterly Progress Report #l some discussion w a s  given t o  

the  d e f i n i t i o n  of a Mars Lander Experiment designed t o  perform spectral photo- 

metric measurements of t h e  Martian atmospheric day, tw i l igh t  and n ight  airglows. 

Some of t h e  requi red  i n i t i a l  t a sks  were performed i n  order t o  make a preliminary 

evaluation of t he  f e a s i b i l i t y  and p o t e n t i a l  involved i n  the  performance of 

t h e  experiment. 

During t h e  cur ren t  repor t ing  period t h i s  task has been completed. 

For convenient reference,  t h e  r e s u l t s  are combined i n t o  one d e t a i l e d  r epor t  

which i s  given below. 
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a. Introduct ion 

The i d e n t i f i c a t i o n  of both organic  and inorganic atomic and 

molecular cons t i t uen t s  i n  t h e  Martian atmosphere i s  considered t o  be fundamental 

t o  aeronomic and exobiological  s tud ies .  

a most valuable  source of these  data  has been the  performance of day, twi l igh t ,  

and n ight  airglow observations employing ground-based spectrophotometric tech- 

niques i n  t h e  v i s i b l e  region of t he  spectrum. 

can be t r ans l a t ed ,  extended and modified i n t o  an appropr ia te  configurat ion so 

t h a t  similar Martian sur face  observations may be performed over both t h e  u l t r a -  

v i o l e t  and v i s i b l e  regions of t he  spectrum. 

I n  the  terrestrial atmospheric case, 

These es tab l i shed  techniques 

I n  Quarterly Progress Report #1 it was demonstrated t h a t  

airglow experiments can be performed i n  a more optimum fashion from the  Martian 

sur face  where many of t h e  cons t r a in t s  f o r  an e a r t h  sur face  platform a r e  minimized. 

On t h e  bas i s  of t he  work performed during t h i s  quar te r ,  it w i l l  be shown t h a t  a 

number of unique oppor tuni t ies  may e x i s t  f o r  t he  generat ion and subsequent ob- 

se rva t ion  of s i g n i f i c a n t  s i g n a l  i n t e n s i t i e s  from s o l a r  i l luminated cons t i t uen t s  

i n  the  Martian atmosphere a s  w e l l  a s  self-emissions due t o  chemiluminescent 

reac t ions  and e l ec t ron  and proton bombardment processes involving c e r t a i n  species .  

Spec i f ica l ly ,  i t  can now be demonstrated t h a t  t h e  general  background r ad ia t ion  

appl icable  t o  t h e  Martian airglow experiment i s  about two orders  of magnitude 

less than t h a t  encountered on e a r t h  and furthermore, t h a t  t h e  s p e c t r a l  range of 

i nves t iga t ion  can be extended dawn t o  200051. 

atmospheric cons t i t uen t s  are abundant f o r  t he  region XX 2000-300051, which is  

access ib l e  from a Mars-based platform. 

Signal  sources involving Martian 

A double-pass scanning spectrophotmeter i s  proposed t o  

scan t h e  region XX 2000-80002; it is  a simplifEed vers ion  of a developed cap- 

a b i l i t y  f o r  use  i n  e a r t h  s a t e l l i t e s .  Since it involves no moving o p t i c a l  
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components, it can be packaged f o r  extreme ruggedness i n  order t o  surv ive  t h e  

r e l a t i v e l y  high g-loading i n  t h e  landing environment. 

The s p e c i f i c  experiments suggested i n  t h e  following sec t ions  

involve a hos t  of complex t h e o r e t i c a l  and p r a c t i c a l  problems which are considered 

t o  l i e  outs ide  t h e  scope of t h e  present survey and f e a s i b i l i t y  study. I n  f a c t ,  

i n  some cases, it is d i f f i c u l t  t o  assess t h e  va lue  of performing a s p e c i f i c  

experiment as compared t o  o the r  techniques which may be a v a i l a b l e  or have 

been suggested f o r  t h e  same purpose. Al te rna t ive ly ,  it is  f e l t  t h a t  enough 

scope and da ta  have been incorporated i n t o  t h e  present discussions t o  amply 

i l l u s t r a t e  t h e  p o t e n t i a l  involved i n  a number of app l i ca t ions  of airglow obser- 

va t ion  technology f o r  t h e  i d e n t i f i c a t i o n  of s p e c i f i c  atomic and molecular con- 

s t i t u e n t s  i n  t h e  atmosphere of Mars. 

The remaining discussion i s  presented i n  t h e  following 

four sec t ions .  The pe r t inen t  geometric and s o l a r  i l lumina t ion  f a c t o r s  involved 

i n  the  performance of t h e  proposed Martian tw i l igh t ,  day and n igh t  airglow 

experiments are discussed i n  Section b, while a number of poss ib l e  s i g n a l  gen- 

e r a t i o n  sources wi th in  t h e  s p e c t r a l  range XX 2000-80002 involving some of t h e  

more poss ib le  cons t i t uen t s  i n  t h e  Martian atmosphere i s  included i n  Section c. 

For convenience, Section c is  divided i n t o  f i v e  subsections devoted t o  consid- 

e r a t i o n  of t h e  r o l e s  of resonance sca t t e r ing ,  f luorescence sca t t e r ing ,  atmos- 

pher ic  absorption, nightglow, and Martian dust. The experimental configuration 

of t h e  suggested scanning spectrophotometer i s  discussed i n  Section d. 

b. On t h e  Geometric and Experimental Configurations Involved 
i n  t h e  Performance of Photometric Measurements from a 
Mars Lander Platform 

Most of t h e  pe r t inen t  geometric parameters involved i n  t h i s  

study are i l l u s t r a t e d  i n  Figur$’7. I n  t h i s  sec t ion ,  a number of r e l a t ionsh ips  
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Figure 7; Geometry of the Martian airglow spectrophotometric 
scanning equipment. 
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w i l l  be deduced between these  several parameters which are employed subsequently 

i n  the  development and discussions of t h e  suggested experimental configurations.  

Zenith ((3 = Oo) sky radiances have been ca lcu la ted  f o r  both 

e a r t h  and Mars f o r  t h e  case of s o l a r  zen i th  angle of zero degrees (i.e., over- 

head sun) employing a v a i l a b l e  model atmospheres f o r  ea r th  and Mars, 

t h e  appropr ia te  inc ident  s o l a r  f luxes  (bq) and t h e  absorption (56) and Rayleigh 

s c a t t e r i n g  (51) c h a r a c t e r i s t i c s  of t h e  several pe r t inen t  planetary atmospheric 

cons t i tuents .  wherein t h e  heavy dashed and 

s o l i d  curves obta in  f o r  t h e  e a r t h  and Mars zeni th  radiances respec t ive ly .  It 

should be noted t h a t  two separa te  radiance s c a l e s  are employed i n  t M s  f i g u r e  

which i l l u s t r a t e s  two important f ac to r s .  F i r s t ,  over t h e  s p e c t r a l  range 

hh 3000-80002, Martian atmospheric background i n t e n s i t i e s  are about two orders  

of magnitude less than those  on ear th ,  (which is roughly equivalent t o  a 

platform located a t  about 30 km above t h e  su r face  of t h e  ea r th )  and second, 

t h e  f a c t  t h a t  t h e  observational s p e c t r a l  range i s  extended d m  t o  20002 f o r  

thebcase of Mars. However, a por t ion  of t he  apparent improvement i n  back- 

ground r a d i a t i o n  is  due t o  t h e  sca l ing  f a c t o r  appl ied  t o  t h e  lower inc ident  

Martian s o l a r  f lux.  

a corresponding decrease whereas i n  t h e  case of self-emission sources, f u l l  

advantage can be taken of t h e  lower background radiance conditions. It should 

be s t r e s s e d  t h a t  only t h e  r o l e  of Rayleigh s c a t t e r i n g  has been considered i n  

these ca l cu la t ions  so t h a t  t h e  presence of a solar-i l luminated sur face  haze 

layer  would r e s u l t  i n  a M i e  s c a t t e r i n g  background i n t e n s i t y  cont r ibu t ion  which 

has not been included herein.  I n  any event, it appears t h a t  as f a r  as back- 

ground considerations are concerned, d i s t i n c t  advantage is  obtained with 

(47,481 

The r e s u l t s  are shown i n  Figure 

Thus, s o l a r  f l u x  dependent s i g n a l  sources would undergo 
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respec t  t o  t h e  terrestrial atmospheric case f o r  t h e  performance of dayglow 

observations from t h e  Martian surface.  

For t h e  e a r t h  case, it has been w e l l  e s tab l i shed  t h a t  

tw i l igh t  airglow observations con t r ibu te  s i g n i f i c a n t  da ta  t o  t h e  aeronomy of 

t h e  upper atmosphere. I n  t h e  following discussions,  re fe rence  i s  made t o  t h e  

performance of cogent t w i l i g h t  observations i n  both t h e  zeni th  (p = 0”) and 

horizon (or more appropr ia te ly  a t  p Z 80 ) d i rec t ions .  0 Accordingly, f o r  sub- 

sequent re ference  it is  convenient t o  de r ive  a number of r e l a t ionsh ips  involving 

t h e  geometric parameters i d e n t i f i e d  i n  Figure77. 

The tw i l igh t  geometry pe r t inen t  t o  planetary atmospheres 

has  been discussed i n  d e t a i l  elsewhere!’” For t h e  s impl i f ied  case where atmos- 

pheric r e f r a c t i o n  i s  neglected, a sharp shadow l i n e  AB preva i l s  as shown i n  

F i g u r e r j  . 
angle, p = 0 and s m a l l  a-values, 

Under such conditions,  it can be shown t h a t  f o r  t he  zeni th  look- 

0 

h Z X a’ f o r  e a r t h  ( 44) 

2hz % a’ f o r  Mars (45) 

0 I n  addi t ion ,  f o r  horizon observations performed along p = 90 , t h e  horizon 

i l lumina t ion  a l t i t u d e ,  h as shown i n  Figure was determined d i r e c t l y  from 

geometric r e l a t ionsh ips .  The zeni th  and horizon i l lumina t ion  a l t i t u d e s ,  h 

and h 

s o l a r  depression angle, a, i n  degrees, and i n  minutes. 

H 

Z 

r e spec t ive ly  f o r  Mars are shown i n  Figure 9 i n  terms of both t h e  H 

Resultant zen i th  radiances are presented i n  Figure \ @  

i n  t e r m s  of Rayleighs/X as a func t ion  of wavelength f o r  A x  2000-80008 and 

a number of h -values ranging from 0-100 km. 

a-values are included on each h -curve. 

For convenience, t h e  corresponding 
Z 

The horizon radiance i n  Rayleighs/X 
2 
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Figure 10. Zenith sky radiance a s  a function of wavelength for 
selected solar depression angles. 
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is  presented i n  Figure 

f igure ,  t h e  radiance ca l cu la t ions  were performed f o r  t h r e e  r ep resen ta t ive  

wavelengths, namely 2000, 2500, and 30002 s ince  no s i g n i f i c a n t  a t t enua t ion  

occurs f o r  XX > 30002 where t h e  screening height approaches zero km. 

screening height,  h 

1 a s  a function of s o l a r  depression angle. I n  t h i s  

The 

r e s u l t s  from a t t enua t ion  along t h e  tw i l igh t  path indicated 
S 

i n  Figure8? as A'B'. 

f o r  xx < 19752 where GO2 absorption predominates. 

decreased a t t enua t ion  is  due only t o  atmospheric Rayleigh s c a t t e r i n g  by t h e  

I n  t h e  case of Mars, s i g n i f i c a n t  a t t enua t ion  occurs 

A t  higher wavelengths, t he  

major cons t i tuent  model atmosphere gases, i .e.,  GO and N2. ( 4 8 )  The sharp 2 

increase  i n  hs-values f o r  XA < 200051 shown i n  Figure \g2 i l lustrates t h i s  point.  

I n  t h e  present discussion, the  h -values are small compared t o  t h e  rad ius  of 

t h e  p lane t  a t  a l l  wavelengths AX 2000-80002. 

S 

Under t h i s  condition and f o r  re- 

l a t i v e l y  moderate s o l a r  depression angles, i t  i s  appropr ia te  t o  simply add 

the  h and h -values t o  de r ive  t h e  e f f e c t i v e  a l t i t u d e  above which r e s iden t  

atmospheric cons t i t uen t s  are f u l l y  s o l a r  i l luminated under given tw i l igh t  

conditions. This i s  i l l u s t r a t e d  i n  F i g u r e '  by t h e  a l t i t u d e  region above t h e  

poin t  marked B'. 

S z 

Estimates were made f o r  t he  t i m e  dura t ion  of s p e c i f i c  t w i -  

l i g h t  conditions which obta in  on both e a r t h  and Mars f o r  comparison and r e f e r -  

ence. For t h e  present purpose, an  a r b i t r a r y  tw i l igh t  condition is  defined f o r  

a change i n  s o l a r  depression angle, & from 1 t o  18 degrees (which corresponds 

t o  astronomical t w i l i g h t  on ear th) .  

a func t ion  of da t e  a t  common l a t i t u d e s  were acquired f o r  both planets.  

The t i m e  dura t ions  of t h i s  condition as 

The 

data,  pe r t inen t  t o  t h e  case of e a r t h  was  deduced d i r e c t l y  from da ta  contained 

i n  t h e  American Ephemeris and Nautical  Almanac. Although corresponding da ta  
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Figure 12. Screening height a s  a function of wavelength for Martian 
twilight. 
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f o r  Mars were n o t  r e a d i l y  ava i lab le ,  they were ca l cu la t ed  by app l i ca t ion  of 

t h e  f o 1 lowing express ion 

I '0 - TT 
*tT = I 360/24 .7  

0 AtT = t i m e  duration f o r  astronomical tw i l igh t  = & =  0-18 , cos 7 

-tan 6 t a n  X. 

= 
0 

s i n  6 s i n  X f s i n  a 
cos 6 cos X cos 'f 2 2  - T 

(46 

(47 1 

where 6 = s o l a r  dec l ina t ion  angle  

X = geographic l a t i t u d e  

a = s o l a r  depression angle  and 

The f a c t o r  360/24 .7  relates t o  the  r o t a t i o n  period pe r t inen t  t o  Mars. 

The t i m e  duration of astronomical tw i l igh t  (& = 0-18O) 

f o r  t h e  northern hemisphere of e a r t h  and Mazrs are shown i n  Figures\?$ and 

respec t ive ly .  The s i m i l a r i t y  of t h e  A t  -values f o r  common l a t i t u d e  i s  s t r i k i n g  T 

although t h i s  behavior r e f l e c t s  t he  ensemble of pe r t inen t  planetary and o r b i t a l  

c h a r a c t e r i s t i c s  of t h e  two p lane ts .  

I n  summary then, t h e  following pe r t inen t  f e a t u r e s  can be 

noted: (a) f o r  t h e  s p e c t r a l  region M 3000-8000A, t h e  zeni th  sky radiance 

observed on t h e  su r face  of Mars is  about two orders  of magnitude less than 

t h a t  which p reva i l s  on the ea r th ' s  su r f ace  and t h a t  t h i s  background corres- 

ponds t o  t h a t  encountered from a platform located a t  a 30 - km e a r t h  a l t i t u d e ,  

(b) f o r  Mars, t h e  s p e c t r a l  region of i nves t iga t ion  can be extended down t o  

ZOO&, (c) t h e  t i m e  dura t ion  of spec i f i ed  tw i l igh t  conditions f o r  e a r t h  and 

Mars are similar, and (d) f o r  given a-values, t h e  shadow he ight  on Mars is 

about ha l f  of t h e  e a r t h  value, which allows increased observation t i m e  per 

0 
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u n i t  a l t i t u d e  i n t e r v a l .  

The r e l a t i o n s h i p s  and r e s u l t s  presented i n  Figures 71 

through \& i nc lus ive  w i l l  be r e fe r r ed  t o  and employed as required i n  t h e  

following discussions which i d e n t i f y  a number of poss ib l e  s i g n a l  sources which 

e m i t  throughout t h e  s p e c t r a l  region Ah 2000-8OOOa. 

c. P o t e n t i a l  S igna l  Sources i n  t h e  Atmosphere of Mars Owing 
t o  t h e  Following Phenomena: Resonance Scattering, 
Fluorescence Sca t te r ing ,  Chemiluminescence, Absorption, 
and P a r t i c u l a t e  Sca t te r ing .  

I n  t h i s  sec t ion ,  a number of poss ib le  s i g n a l  sources are 

discussed and evaluated i n  order  t o  i l l u s t r a t e  t h e  p o t e n t i a l  involved i n  per- 

forming t h e  proposed Martian Lander spectrophotometric experiment. Owing both 

t o  t h e  broad scope of t h e  problems encountered and t o  t h e  required b rev i ty  

of t h e  presentation, d e t a i l e d  discussions involving parameters which are of 

necess i ty  somewhat specula t ive  have been avoided. Thus, each s i g n a l  source 

category discussed r e s u l t s  i n  t h e  i l l u s t r a t i o n  of t h e  p o t e n t i a l  involved 

r a t h e r  than i n  t h e  recommendation of s p e c i f i c  d e t a i l e d  s e l e c t i v e  experiments. 

A convenient format has been adopted which incorporates f i v e  ca tegor ies :  (1) 

Resonance Emission from Solar Il luminated Atoms or Ions i n  t h e  Upper Atmosphere, 

(2) Fluorescence Emission from Solar Illuminated Molecules or Molecular Ions, 

(3) Airglow Radiations from Chemiluminescent Reactions between Atmospheric 

Constituents, ( 4 )  Absorption Owing t o  t h e  Presence of Trace Consti tuents i n  

t h e  Lower Atmosphere of t h e  Planet,  and f i n a l l y ,  ( 5 )  The Role of P a r t i c u l a t e  

Sca t te r ing  due t o  Dust a d  Haze i n  t h e  Lower Atmosphere of Mars. 

(1) Day and Twilight Airglow Emissions Owing t o  Resonance 
Sca t t e r ing  by Solar  Il luminated A t o m s  or Ions i n  the  
Upper Atmosphere of Mars 

I n  general, atomic, i o n i c  and metastable spec ies  i n  

a planetary atmosphere r e s i d e  i n  t h e  upper a l t i t u d e s  owing t o  recominbation 
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processes which become more e f f i c i e n t  wi th  increas ing  number dens i t i e s .  The 

r e s u l t a n t  high a l t i t u d e  p r o f i l e s  are p a r t i c u l a r l y  amenable t o  observations 

conducted under tw i l igh t  conditions wherein t h e  background r a d i a t i o n  can be 

minimized without s i g n i f i c a n t  reduction i n  t h e  s i g n a l  i n t ens i ty .  This is not 

to  say t h a t  f u l l  dayglow observations are precluded; thus  €or high s i g n a l  i n -  

t e n s i t y  magnitudes, a program of dayglow observations may be warranted. 

With c e r t a i n  simplifying assumptions f o r  t h e  case of 

resonance s c a t t e r i n g  by atoms or ion spec ies  

-2 -1 2-1 where 4.1~1 = t h e  emission rate i n  photons-cm -sec - 
(one Rayleigh = 10 6 photons-cm-2-sec-1) 

-2 -1 8-1 3I-F = t h e  s o l a r  f l u x  i n  photons-cm -sec - 
h = resonance wavelength 

f = f-value o r  o s c i l l a t o r  s t r eng th  of t h e  l i n e  

w = t h e  albedo for s i n g l e  s c a t t e r i n g  

N = number of atoms along t h e  l i n e  of s i g h t  i n  atoms-cm -2 

P = cos 0 where 8 is the ang le  between t h e  i l lumina t ing  and 

observing paths. 

For t h e  present purposes, it is convenient t o  de f ine  an  emission p robab i l i t y  

fac tor ,  i.e., t h e  number of photons s c a t t e r e d  p e r  second per s o l a r  i l luminated 

atom: 
3 

so that 

N 431-1 = g 

56 



The d e t a i l e d  composition of t h e  Martian atmosphere is  

unknown a t  present. However, even with t h e  l imited a v a i l a b l e  data, one may 

specula te  t h a t  an ensemble of p o s s i b i l i t i e s  exist f o r  t h e  production of n e u t r a l  

and metastable atoms and ions i n  the  upper atmosphere. When s o l a r  i l luminated, 

t hese  spec ies  w i l l  re-emit a t  t h e i r  c h a r a c t e r i s t i c  s igna tu re  resonance rad ia-  

t ions  which can represent  poss ib l e  s i g n a l  sources of i n t e r e s t  f o r  hh 2000-8000& 

Among t h e  generation processes are included: ionospheric recombination, s o l a r  

photodissociation, photoelectron and s o l a r  wind proton i n t e r a c t i o n  wi th  t h e  

atmospheric cons t i tuents ,  photochemical production of these  species, etc. Under 

c e r t a i n  conditions,  it can be expected t h a t  t h e  r e s u l t a n t  resonance s i g n a l s  

could be highly intense.  For example, i n  t h e  terrestrial  atmosphere case, the  

[ O d  21-63002 and t h e  sodium-D-5890a r ad ia t ions  (on t h e  order of 20kR) have 

been observed i n  f u l l  dayglow experiments by Noxon and Goody (55) and Donahue 

respec t ive ly ,  i n  s p i t e  of t h e  in t ense  e a r t h  background r ad ia t ions  shown i n  

Figure $ 

t e n s i t i e s  pe r t inen t  t o  Mars are two orders  of magnitude lower, it is  evident 

t h a t  i n  t h e  proposed Martian sur face  experiment similar and lesser emission 

i n t e n s i t i e s  could be observed i n  t h e  dayglow. 

mospheric atoms and ions r e s u l t s  from t h e  deposit ion and subsequent observation 

of i n t e rp l ane ta ry  deb r i s  i n  t h e  upper atmosphere of Mars. This latter source 

i s  s ingled  out f o r  more d e t a i l e d  discussion i n  order t o  i l l u s t r a t e  t h e  poten- 

t ia 1 involved . 

(5y) 

a t  these  s p e c t r a l  pos i t ions .  Since t h e  corresponding background in- 

Another poss ib le  source of a t -  

In t e rp l ane ta ry  debr i s  represents  a n  important source 

of minor cons t i t uen t  atoms and ions i n  t h e  upper atmosphere of t h e  ear th .  The 

i d e n t i t y  and inventory of t hese  deb r i s  atoms and ions  have been experimentally 

+"' )by d i r e c t  in-s i t u  measurements confirmed f o r  N a  , Mg , A$ , Ca , Fe and S i  + + + + +  

by ground-based photometric tw i l igh t  3. and a l s o  f o r  Ca  , Na, K and L i  
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observations. 

peak i n  t h e  v i c i n i t y  of 100 km with a sharp cutoff occurring a t  lower a l t i -  

tudes due t o  t h e  occurrence of oxidation processes. 

a somewhat similar s i t u a t i o n  obta ins  i n  t h e  upper atmosphere of Mars. 

on t h e  b a s i s  of an ana lys i s  performed by Marmo and Brown, @") it  has been 

shown t h a t  assuming equivalent deb r i s  i n f l u x  rates, f o r  t h e  case of Mars t h e  

peak number dens i ty  would be l a rge r  (due t o  t h e  l imi ted  oxida t ion  processes 

compared t o  ea r th )  and a l s o  i t  would occur a t  a l t i t u d e s  i n  t h e  v i c i n i t y  of 

80 km. 

deb r i s  spec ies  i n  the  upper atmosphere of Mars. 

i t y ,  t h e  following preliminary ana lys i s  was performed. 

The observed atomic number dens i ty -a l t i t ude  p r o f i l e s  t y p i c a l l y  

It may be speculated t h a t  

I n  f a c t ,  

I n  any case, i t  appears reasonable t o  search f o r  t h e  presence of t hese  

To emphasize t h i s  poss ib i l -  

F i r s t ,  a number of poss ib l e  deb r i s  cons t i t uen t s  were 

se l ec t ed  on the b a s i s  of two cri teria:  (a) t h a t  they possess a r e l a t i v e l y  high 

chemical abundance i n  t y p i c a l  metegrs, (5q) and (b) t h a t  t h e i r  resonance wave- 

lengths are located a t  Xh > 20008. (5?) 

corresponding resonance wavelengths are presented in columns 1 and 2, respec t ive ly  

The s e l ec t ed  debr i s  atoms and t h e i r  

. From r e a d i l y  a v a i l a b l e  da ta  (5~'") corresponding g-values w e r e  

ca l cu la t ed  as shown i n  column 3 of Table V . 
ates can be derived f o r  t h e  tabula ted  spec ies  as follows. F i r s t ,  it is assum- 

ed t h a t  t h e  deposited inventory of t h e  upper atmospheric deb r i s  spec ies  is  

equivalent t o  i t s  chemical abundances i n  t y p i c a l  meteors. 

t h i s  abundance parameter, t he  product gC-values i n  column 4 of Table 

measures of t h e  expected re la t ive s i g n a l  i n t e n s i t i e s .  

normalize these  va lues  t o  sodium which is assigned an  a r b i t r a r y  va lue  of unity.  

As noted previously, a r ep resen ta t ive  e a r t h  va lue  f o r  t h e  Na-D-58908 dayglow 

Relative s i g n a l  i n t e n s i t y  e s t i m -  

Then i f  C represents  

It i s  convenient t o  
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Relative Emission Probabi l i ty  - Abundance Fac tors  (gC-values), f o r  Solar  
I l luminated Meteoric Debris Atomic and/or Ionic  Species 

i n  t h e  Martian Atmosphere 

Debris 
Species 

AR 1 

Ca I 

ca I1 

Fe I 

Fe I1 

K I  

L i  I 

% I  

% 11 

Na 1 

N i  1 

S i  1 

T i  I 

Resonance 
Wavelength 2 

308 2 

4227 

3933 

344 1 

2599 

76 99 

6708 

2852 

2796 

5890 

3370 

25 14 

3342 

** hoton 
g ( tec-atom)x gC-va lu es 

7 . 6  ( - 2 )  2.6 (-1) 

L O ( - 2 )  1.7 ( - 2 )  

1 * 4 ( - 1 )  

7 . 6  ( - 3 )  6 . 0 ( - 1 )  

2 . 2 ( - 2 )  

1 .2( -1)  1 . 4 ( - 1 )  

4 . 4 ( 0 )  

L O ( - 1 )  

3 . 1 ( - 2 )  

6 . 4 ( - 1 )  

8 . 2 ( - 2 )  

6 . 0 ( - 3 )  

4 . 0 ( - 2 )  

1.6 ( - 2 )  

3 . 2 ( 0 )  

L O ( 0 )  

7 . 9 ( - 2 )  

2 .1( -1)  

3 . 4 ( - 2 )  

* 
Values i n  parenthes is  are ra i sed  t o  t h a t  power of ten  

gC-values are relative t o  a va lue  of un i ty  f o r  sodium 
i t  ** 
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I f  t h i s  s igna l  i n t e n s i t y  value is employed (522 can be taken as about 20 kR. 

a s  a reasonable estimate f o r  t he  Mars dayglow, it follows t h a t  a l l  t he  species  

indicated i n  Table should be r ead i ly  observable under c e r t a i n  spec i f ied  

conditions (of both dayglow and twi l igh t  airglow) encountered during t h e  conduct 

of t he  suggested experimental program. 

(2) Day and Twilight Airglow Emissions Owing t o  
Fluorescence Sca t te r ing  by Solar  Il luminated Molecules 
and Molecular Ions i n  the  Atmosphere of Mars 

Molecules and molecular ions which may represent  

sources of  Martian atmospheric emission included t h e  following candidates:  

+ +  + + GO, NO, 02, N2, OH, CN, N2, 02, GO , GO2, and others .  

a n t  f luorescence over t he  s p e c t r a l  region of i n t e r e s t  hh 2000-8OOOa owing t o  

Therefore, t h e  r e s u l t -  

the  i n i t i a l  absorpt ion of s o l a r  r ad ia t ion  by these  molecules cons t i t u t e s  

another s igna l  source which is evaluated i n  the  following discussion.  

The molecular case i s  more complex than i t s  atomic 

analog discussed previously although t h e  s i n g l e  s c a t t e r i n g  theory f o r  atoms 

may be adapted r e a d i l y  f o r  app l i ca t ion  t o  diatomic molecules. The expression 

which descr ibes  s i n g l e  molecular photon s c a t t e r i n g  i s  analogous t o  Equation (48) 

f o r  atomic spec ies  and i s  given by: 

where t h e  v'v" subsc r ip t s  emphasize t h e  f a c t  t h a t  t he  i n i t i a l  absorpt ion may 

occur i n  one e lec t ronic-v ibra t iona l  t r a n s i t i o n  while t h e  subsequent fluorescence 

may occur a t  

i t i o n s .  I n  t h e  above expression, t h e  F, f ,  and X-values have subsc r ip t s  v'o 

t o  ind ica t e  involvement of the  absorpt ion band of t h e  lowest v i b r a t i o n a l  level 

longer wavelengths involving o ther  e lec t ronic-v ibra t iona l  t r ans -  

(v" = 0) of t h e  ground e l ec t ron ic  state. The N -value ind ica t e s  t h a t  t h e  
0 
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p a r t i c i p a t i n g  molecules genera l ly  r e s i d e  a t  t h e  lowest v i b r a t i o n a l  level 

of t he  ground state. 

p robab i l i t y  f a c t o r  f o r  molecular f luorescence may be expressed as 

As a f u r t h e r  analogy t o  t h e  case of atoms, t h e  emission 

so t h a t  

I n  general ,  t h e  pe r t inen t  molecular f-values are not a v a i l a b l e  so t h a t  t h e  

corresponding g ,,-factors are n o t  r e a d i l y  ca lcu lab le .  However, t h e  rela- 

tive i n t e n s i t y  d i s t r i b u t i o n  of t h e  molecular resonance and f luorescent  bands 

can be deduced f o r  a n  o p t i c a l l y  th i ck  atmosphere on t h e  bas i s  of t h e  published 

t h e o r e t i c a l  r e s u l t s  of Chamberlain and Sobouti. (") 

t h i s  case 

v v  

They have shown t h a t  f o r  

(54) 
PO 

V'O v'v" P 4RIVlVf, = RF w - H(Po) 

where H(p ) a e tabula ted  functions by Chandrasekhar 

1 i n e  -wid t h  . (6  

fluorescence bands are propor t iona l  t o  t h e  s o l a r  f lux ,  

f o r  s i n g l e  sca t t e r ing ,  wvlvl,. The fvlo-values are not involved i n  Equation 

(54) s i n c e  t h e  s o l a r  f l u x  penet ra tes  i n t o  t h e  o p t i c a l l y  th i ck  atmosphere t o  

s a t u r a t e  t h e  bands. 

and Ah is t h e  e f f e c t i v e  
0 

Thus, t h e  relative i n t e n s i t i e s  of both t h e  resonance and 

and t h e  albedo Fv'o 

If theAh(p /p)H-value is assigned t h e  va lue  of unity,  then 
0 

which y i e l d s  reasonable s i g n a l  estimates f o r  t h e  o p t i c a l l y  t h i c k  case, as w e l l  

as ind ica t ing  t h e  relative i n t e n s i t i e s  i n  a given f u l l y  s o l a r  i l luminated band 

system. 
6 1  



A number of per t inent  parameters f o r  several poss ib le  

molecular cons t i t uen t s  i n  t h e  Martian atmosphere are summarized i n  Table !kk . 
The band systems a r e  i d e n t i f i e d  and t h e  appropr ia te  e l ec t ron ic  t r a n s i t i o n s  a r e  

ind ica ted  i n  column 2 while  column 3 includes some se lec ted  vf-v” t r a n s i t i o n s  

and t h e i r  corresponding 1-values a s  presented by Barth. 

t h e  i n i t i a l  absorption (i. e., v . h )  t r a n s i t i o n  can be i d e n t i f i e d  e a s i l y  while 

I n  each case, ( 63)  

t he  subsequent f luorescent  emissions were se lec ted  on t h e  bas i s  of t h e i r  re- 

l a t i v e  e f f ic iency  over the s p e c t r a l  region A 1  > 2000a. 

Equation (ISS), t h e  

emission bands are presented i n  column 4 of t h e  tab le .  

I n  accordance with 

 values corresponding t o  t h e  se lec ted  f luorescent  

A t  best ,  these  values 

represent  maximum s igna l  estimates which can be expected t o  be reduced s i g n i f i -  

can t ly  i n  p r a c t i c e  f o r  s p e c i f i c  cases. F i w l l y ,  some general  comments a r e  

presented i n  column 6 which a r e  pe r t inen t  t o  each of t h e  ind iv idua l  t r a n s i t i o n s .  

Detai led evaluat ion of t h e  probabi l i ty  of observing 

any s p e c i f i c  emission ind ica ted  i n  the  t a b l e  would r equ i r e  a complex ana lys i s  

where much of t h e  bas ia  input  data  which a t  t h i s  point  a r e  a t  bes t  specula t ive  

or j u s t  not  av i l ab le .  For example, i t  is important t o  a s c e r t a i n  whether a 

p a r t i c u l a r  molecular cons t i tuent  i s  well-mixed or i s  r e s iden t  i n  layer  form i n  

t h e  upper Martian atmosphere. It can be assumed t h a t  t h e  major model atmos- 

pheric  cons t i tuents ,  N and CO are mixed, while f o r  such species  a s  OHy CN, 2 2 
3 . 4 -  3. + 

2 N2, 02.’ CO , and CO layer ing could be invoked. Furthermore, f o r  such molecules 

as CO, NO, and 0 t h e  atmospheric d i s t r i b u t i o n  quest ion can not be answered 

a t  t h i s  t i m e .  

2 
Additionally,  an important f a c t o r  i n  evaluat ion of tw i l igh t  

observation of molecular f luorescence involves t h e  horizon screening height  

shown i n  Figure $2 and discussed i n  Sect ion b. For example, i f  t h e  i n i t i a l  
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absorpt ion occurs a t  a wavelength of about 14008, (i.e., see t h e  4 th  pos i t i ve  

5-0 t r a n s i t i o n  f o r  CO i n  T a b l e v $  ) t h e  r e s u l t a n t  screening height  is approx- 

imately 160 km. 

is evident t h a t  t h e  column count of solar- i l luminated CO molecules is  rela- 

t i v e l y  l imited.  Accordingly, under c e r t a i n  condi t ions i t  may be advantageous 

t o  select absorpt ion t r a n s i t i o n s  which involve r e l a t i v e l y  long wavelengths and 

correspondingly lower screening heights .  Additionally,  i t  should be noted 

tha t  unless  the  molecular cons t i tuent  r e s i d e s  i n  an atmospheric layer  con- 

f igura t ion ,  t he  performance of tw i l igh t  measurements may not  be p a r t i c u l a r l y  

advantageous. Al te rna t ive ly ,  t he  performance of both day and tw i l igh t  airglow 

experiments could provide data  from which the  ex is tence  of e i t h e r  t he  mixing 

or layer ing configurat ion could be ascer ta ined.  F ina l ly ,  t h e  r o l e  of quench- 

ing must be considered for r e l a t i v e l y  low a l t i t u d e  airglow phenomena. 

is expecial ly  t r u e  i n  cases where forbidden t r a n s i t i o n s  (i.e., long l i f e t imes )  

are involved. 

When t h i s  va lue  is added t o  the  h -values of Figure $@ , it 
Z 

This 

Many of t he  t r a n s i t i o n s  spec i f ied  i n  Table T& can re- 

s u l t  i n  f luorescence caused by the  in t e rac t ion  of photoelectrons i n  t h e  upper 

atmosphere of Mars. 

cons t i tuents ,  t h i s  phenomena represents  t h e  major emission f a c t o r  so t h a t  i t s  

e f f e c t  on Mars should a l s o  be recognized. However, t h i s  w e l l  known add i t ive  

source funct ion is not  s t r e s sed  here  s ince  it  is a t r a c t a b l e  problem so long 

as t h e  appropr ia te  da ta  are ava i lab le .  

It should be noted t h a t  i n  t h e  e a r t h  case f o r  c e r t a i n  

On t h e  bas i s  of t he  foregoing discussions,  and t h e  data  

presented i n  Table , it is evident tha e d e f i n i t i o n  of s p e c i f i c  measure- 

ments is  an extremely complex matter. However, with appropriate  e f f o r t ,  some 
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s e l e c t i v i t y  f o r  t h e  ensemble of p o s s i b i l i t i e s  i n  Table \m could be made i n  

order  t o  i s o l a t e  t h e  more promising cases. For t h e  present  purposes, t h i s  

t a sk  is considered t o  l i e  beyond the  scope of t h i s  presentat ion.  

I n  summary, then, i t  is  f e l t  t h a t  t h e  data shown i n  

Table QJ and the foregoing discussions ind ica t e  the p o t e n t i a l  of performing 

fluorescence experiments i n  the  spectral  region Xh > 2000g, i n  order  t o  

i d e n t i f y  a number of possibly important molecular cons t i tuents  i n  the  Martian 

atmosphere and ionosphere. 

( 3 )  Twilight and Night Airglow Emissions from Chemi- 
luminescence Proaesses Occurring i n  t h e  Upper 
Atmosphere of Mars 

It is conjectured t h a t  var ious p o s s i b i l i t i e s  e x i s t  f o r  

t h e  generation of chemiluminescent atomic and molecular emissions due t o  

reac t ions  between ambient chemical cons t i t uen t s  i n  t h e  Martian atmosphere. As 

an example of t he  former, (atomic emissions) chemiluminescence may r e s u l t  

t yp ica l ly  from the  deb r i s  species  enumerated i n  Table V by mechanisms r e l a t e d  

t o  those which photochemically produce t h e  nighttime sodium-D l i n e s  observed 

i n  the  ea r th ' s  atmosphere. 

a t  6300, 6364, 51998, etc. may be produced from a v a r i e t y  of processes which 

I n  addi t ion,  tw i l igh t  and n ight  airglow emissions 

include photodissociation, recombination, photoionization, e lec t ron  and proton 

impact, etc. Concerning molecular system chemiluminescence, i t  has been sug- 

gested t h a t  a s i g n i f i c a n t  port ion of t he  terrestrial n ight  airglow is  a t t r i -  

butable  t o  t h e  production of NO2 produced by t h e  r eac t ion  between NO and 0. 

This process as w e l l  as a s imi l a r  one involving GO and 0 may occur i n  t h e  

* 

Martian atmosphere. These latter two p o s s i b i l i t i e s  a r e  discussed i n  a more 
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d e t a i l e d  evaluat ion below where r e s u l t a n t  order of magnitude s i g n a l  i n t e n s i t y  

estimates are derived. 

f i r s t  suggested t h a t  t he  blue haze observed 
(64 j 

Inn 

on Mars may be due t o  chemiluminescence from a r eac t ion  involving GO and 0 

which r e su l t ed  i n  t h e  production of exc i ted  GO2. The subsequent emission 

from t h i s  exci ted species  r e s ides  i n  a band system i n  the  s p e c t r a l  region 

h~ 3200-60008 with a peak i n t e n s i t y  occurring a t  a wavelength of 400d. 

spectrum w a s  photographed and c l a s s i f i e d  by Mahan and Solo 

JC 

The 

who reported 

t h a t  t h i s  system consis ted of 250 bands with r e l a t i v e l y  l i t t l e  continuum back- 

ground. Inn (6') employed a photochemical equi l ibr ium model (using loca l  

number d e n s i t i e s  f o r  [GO] = LO] = 10 

and t h e  chemiluminescence e f f ic iency  da ta  of Clyne and Thrush (6') t o  estimate 

12 -3 c m  a t  an a l t i t u d e  of about 100 km) 

a t o t a l  band system brightness  of about 20 kR. 

and the  s p e c t r a l  d i s t r i b u t i o n  observed by Mahan and Solo, (6'5) it can be e s t i m -  

On t h e  bas i s  of t h i s  value 

a t e d  t h a t  t h e  s i g n a l  br ightness  of t he  most in tense  band of t he  system could 

amount t o  about 1 kR. 

de t ec t ab le  under t h e  appropr ia te  tw i l igh t  condi t ions (see Figures  \.fO and f 

A s igna l  i n t e n s i t y  of t h i s  magnitude would be easily 

* 
2 With respec t  t o  t h e  p o s s i b i l i t y  of observing t h e  NO 

emissions i n  t h e  tw i l igh t  o r  n ight  a i rglaw,  i t  is  necessary t o  e s t a b l i s h  an 

upper l i m i t  va lue  f o r  NO i n  t h e  Martian atmosphere. 

have s h m  recen t ly  t h a t  under thermodynamic equi l ibr ium an NO/O 

obta ins  throughout t h e  mixed region of t h e  Martian Atmosphere. 

Belton and Hunten (@> experimentally es tab l i shed  an upper l i m i t  value f o r  0 

(670 Marmo and Warneck 

r a t i o  > 1 2 

Additionally,  

2 
20 2 of about 20 cm-arm. o r  about 5.4 x 10 c m  column i n  t h e  Martian atmosphere. 
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I f  t h i s  va lue  is  a l s o  applied t o  t h e  case of NO, then i n  a mixed atmosphere, 

a t  an  a l t i t u d e  of about 100 km t h e  l o c a l  number dens i ty  of NO, [NO] w 10 

Jonathan and Doherty 

f o r  t h e  NO emissions i s  about 2000 t i m e s  g rea t e r  than t h a t  measured f o r  t he  2 

C02 throughout t h e  inves t iga ted  s p e c t r a l  ranges. 

under conditions similar t o  those spec i f i ed  by Inn (") (i.e., where [O] = 

1 O I 2  cmm3) t h e  r e s u l t a n t  chemiluminescent s i g n a l  i n t e n s i t y  may be as l a r g e  

as 4 x 10 kR. However, it should be noted t h a t  t h i s  la t ter  va lue  is predicated 

on t h e  photon emission rate over t h e  e n t i r e  continuumwhich extends over a 

s p e c t r a l  i n t e r v a l  of about 20008. 

average chemiluminescence s5gnal amounts t o  about 2 kR/8. 

continuum peaks around 62008, observations conducted a t  t h i s  s p e c t r a l  pos i t i on  

can be expected t o  amount t o  about an  order of magnitude g rea t e r  o r  about 20 

kR/a. 

of t h e  proposed experiment. However, i n  r e a l i t y  t h e  l o c a l  NO number dens i ty  

a t  a Martian atmosphere a l t i t u d e  of LOO km is probably less than 10 

so t h a t  a concomi tan t  reduction i n  s i g n a l  i n t e n s i t i e s  would r e s u l t .  

11 -3 c m  . 
have demonstrated t h a t  t h e  chemiluminescence e f f i c i ency  

* 
:c 

Thus, it is  evident t h a t  

3 

Thus, on a u n i t  s p e c t r a l  i n t e r v a l  bas i s ,  t h e  

However, s ince  t h e  

Clearly, such s i g n a l  magnitudes could be observed e a s i l y  during t h e  course 

11 -3 c m  

F ina l ly ,  wi th  respec t  t o  t h e  two chemiluminescent 

r eac t ion  examples discussed abwe ,  it should be noted t h a t  t h e  pe r t inen t  chem- 

ical  consumption rates are such t h a t  t h e  active cons t i t uen t  number d e n s i t i e s  

are e s s e n t i a l l y  conserved throughout t h e  night. 

ground i n t e n s i t y  conditions, i t  is evident t h a t  a s e n s i t i v e  technique is  avail- 

a b l e  f o r  p o s i t i v e l y  observing and iden t i fy ing  these  emissions and subsequently 

e s t ab l i sh ing  meaningful upper l i m i t  va lues  f o r  t h e  cons t i t uen t s  involved. 

Under these  minimum back- 
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( 4 )  The Detection, I d e n t i f i c a t i o n ,  and Measurement of 
A l t i t u d e  P r o f i l e s  of Minor Consti tuents i n  t h e  Lower 
Atmosphere of Mars 

I n  t h i s  s ec t ion  is  described an  experimental technique 

designed t o  de tec t ,  ident i fy ,  and measure the  a l t i t u d e  p r o f i l e s  of minor con- 

s t i t u e n t  absorbing spec ies  i n  t h e  lower atmosphere of Mars. For t h i s  purpose, 

tw i l igh t  measurements are performed t o  measure t h e  i r rad iances  of both t h e  

zeni th  and horizon d i r ec t ions .  It w i l l  be demonstrated t h a t  these  i r rad iances  

are s e n s i t i v e l y  perturbed by t h e  presence of absorbing trace cons t i t uen t s  i n  

t h e  lower atmosphere of Mars. This technique involves t h e  following advan- 

tages: (a) t h e  de t ec t ion  c a p a b i l i t y  is  enhanced by about a f a c t o r  of 25 g rea t e r  

than t h a t  a v a i l a b l e  with cu r ren t ly  employed techniques ; (b) t h e  unambiguous 

i d e n t i f i c a t i o n  of t h e  cons t i t uen t  involved i s  poss ib le  owing t o  i ts  absorbing 

c h a r a c t e r i s t i c  f o r  LA > 20002; and f i n a l l y  (c) t h e  spec ies  a l t i t u d e  d i s t r i -  

bution can be ascer ta ined  on t h e  b a s i s  of t h e  geometric f a c t o r s  involved i n  

t h e  performance of cogent tw i l igh t  experiments. 

As discussed previously, t h e  Martian atmosphere is  

e s s e n t i a l l y  t ransparent  t o  s o l a r  zen i th  r a d i a t i o n  f o r  wavelengths above about 

20002 as shown by t h e  r e s u l t s  of F igure% and confirmed by t h e  r ecen t  observa- 

t i ons  of Evans. 

upper l i m i t  vertical column count values f o r  any gas which absorbs r a d i a t i o n s  

of wavelengths g r e a t e r  than 20002. For example, employing t h e  measured ab- 

sorp t ion  cross-sections f o r  ozone i n  t h i s  s p e c t r a l  region, 

upper l i m i t  vert ical  count va lue  of about 1 x 1017 cm2 column can be es tab l i shed .  

I d e n t i f i c a t i o n  of t h e  ex is tence  and establishment of t h e  upper l i m i t  estimate 

On t h i s  bas i s ,  it is  poss ib le  t o  experimentally e s t a b l i s h  

a corresponding 



of t h e  content of t h i s  p a r t i c u l a r  cons t i tuent  has  important implicat ions on 

both aeronomic and b io logica l  processes occurring i n  t h e  Martian atmosphere. 

Similarly,  upper l i m i t  values  can be es tab l i shed  f o r  

o ther  potentially important species  which exhib i t  d i s t i n c t i v e  absorpt ion fea tures .  

The absorpt ion curves f o r  a number of such po ten t i a l ly  important candidate 

species  which qua l i fy  i n  t h i s  regard a r e  presented i n  Figures /&, 

over the  s p e c t r a l  region hh 2000-30002. 

from Calvert and P i t t s . ( y t )  

t o  inorganic species  are presented i n  Figure 15 while the  absorpt ion character-  

ist ics of several i n t e r e s t i n g  organic mater ia ls ,  which may be r e l a t e d  t o  

b io log ica l  i n t e r e s t s ,  are shown i n  Figures  

These data  were ex t rac ted  d i r e c t l y  

It should be noted t h a t  t h e  curves pe r t inen t  

6% 

With respec t  t o  t h e  data  of F igure195,  i t  should be 

noted t h a t  i n  b io log ica l  processes, H 0 i s  required t o  oxidize both s u l f i d e s  2 2  

and c e r t a i n  carbon compounds t o  simple s u l f a t e s  and carbonates. I n  addi t ion,  

(6?) have demonstrated t h a t  SO2 or H S can p a r t i c i p a t e  a s  Marmo and Warneck 

precursor sources €or s u l f u r  i n  t h e  photochemical generation of s u l f u r  contain- 

ing amino ac ids  i n  t h e  Martian atmosphere. Marmo and Warneck ('p have a l s o  

shown tha t ,  i n  t h e  Martian atmosphere, a thermodynamic r e l a t ionsh ip  obta ins  

f o r  t he  NO/02 r a t i o ,  which can be f u r t h e r  r e l a t e d  t o  t h e  content of NO2, 

N20 , and NOCR so t h a t  t h e  presence of these  cons t i t uen t s  may involve both 

important aeronomic and b io log ica l  implications.  For inorganic gases, a num- 

ber of add i t iona l  candidate species  have been enumerated previously i n  Table d3 

where appropr ia te  absorpt ion (v" = 0) bands are shown t o  occur a t  h > 20002 

f o r  several t r a n s i t  ions. 

2 
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I I 

Wavelength A 

The absorption spectrum of H.0. vapor; the absorption coefficient $ IS 
defined by f l  - Z.3030:,(/,/f)/n/, where n is the CoKcntration in mokculeslcubic 
centimta and I  he path in centimeters. From Volman.’’ oripally from Refs. 55 
(CUM a) and 56 (cum b). 

Absorption spectrum of HI. From Romand. 
Wavelength. A 

4Ooo xxx) 2aX)1900 le00 
I I 

. \ A  

The absorption spectrum of S0,Ig). 25 . Spectra determrned by Mn. 
Vemniqus McMillan 

A 

Ataorption spectrum of nitmgen dioxide. NO,. and dinimp -xi&, 
N& at 2Y corrected to pure mmpuund spectra. Fmm Hail and B * a c .  

Tlw absorption spectrum of H S .  H,Se. and H,Te; thc absorptton coeffhvtent 
p. 179; originally from a = ~(~JOl/p(atmM(ml(rrnt. From Rolkfwn and 

Goodcn and Stein. 

Figure 15. Absorption spectra of selected inorganic molecules. 
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Absorption spectra for ( I )  formic acid [CHO,H(.r)l, 27 (a) 2.45 mm, 
(b) 16.4mm. (c) 35.2mm. undefined amount of monomer and dimer contribute; 
cllculatcd assuming monomer only: (2) acetic acid [Ctl,CO,HIq)J. 26.. (a )  3.6mm. 
(b) 8.3 mm. (c) I I 0 mm. (d) I2 9 mm. calculated assuming monomer only; (3) acetic 
anhydride l(CH,CO),O(g)I. 25'. 

WaveIm@h. A 

(I) dimethyl peroxide ItH,OOCH1l,p)l. from Takezaki. Miyazaki. and Nakahara;"* 
(3 dctert-butyl peroxide t(CHJ,COOC(CH,M.~)]. 25 . 

Absorption spectra OT: 

Wavelength, A 

Absorplion spectra for: 
t I) mcthyl formate [CH,O,CH(g)], 25"; 
(2) ethyl formate [CaHsO,CH(,r)I. 25 '; 
(3) methyl acetate [CH@,CCH&q)J. 25"; 
(4) ethyl acetate [C,HeO,CCH,(,r)l, 25'. 

18 

16 

14 

12 

10 

0 

6 

4 

2 

0 

c 

ZOO0 2200 2400 26M) 28M) 3Ooo 3200 
Wavelenglh, A 

\ 

Absorption spectra of ( I )  nitromethane [CH,NO,(n)], 25"; (2) nitroethane 
[C,H,NO,(~)I, 25.; (3) methyl nitrate [CH,ONO,(g)). 25'; (4) ethyl nitrate 
[C HIONO~ 11, 25"- 

Figure 17. Absorption spectra of selected organic molecules. 
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Absorbing gases (for XX > 2000g) which may be present 

i n  t h e  lower Martian atmosphere may act  as photosens i t izers  to allow s o l a r  

photo lys i s  of GO2, HOH, organics, and o the r  molecules which do not absorb t h e  

r e l a t i v e l y  in t ense  s o l a r  f l u x  i n  t h i s  s p e c t r a l  region. For example, although 

CO 

of photosens i t iza t ion  by an  absorbing spec ies  (i.e., SO2, H2S) could r e s u l t  

i n  t h e  photo lys i s  of t hese  spec ies  and subsequent generation of several simple 

andwater vapor do nctabsorb s t rongly  i n  t h i s  region, t h e  invocation of 2 

organic molecules which may have important implications on t h e  exobiology of 

Mars. I n  f a c t ,  several compounds possibly produced by t h e  above mechanism 

are a l s o  represented i n  t h e  l i f  e-cycle. Cha rac t e r i s t i ca l ly ,  s i m p l e  organic 

compounds o f t en  absorb s t rongly  i n  t h e  region XX 2000-30008 as i l l u s t r a t e d  

by t h e  da ta  of Figures 26 and 17 per t inen t  t o  a v a r i e t y  of formaldehydes, 
i 

ketones, organic ac ids ,  hydrides, and esters. Calvert and P i t t s ( ' 7 P  present 

a number of photo ly t ic  mechanisms involving these  and o ther  organic materials, 

t h e  products of which would undoubtedly be important t o  Martian b io log ica l  

inves t iga t ions .  

i n t r i n s i c a l l y  a s su re  a b io log ica l  or ig in ,  although t h e  presence of t hese  

The de tec t ion  of these  or other  organic materials does not 

cons t i tuents  could represent  and possibly be i d e n t i f i e d  with key r e s idue  

miterials of b io log ica l  processes. I n  t h i s  regard, it would be of par t icu-  

lar value t o  review t h e  experimental requirements and expected r e s u l t s  of 

complementary exobiological experiments aboard t h e  Martian Lander. 

The s a l i e n t  f ea tu re s  of an  atmospheric absorption 

measurement experiment can be discussed both i n  terms of t h e  geometry i l l u s -  

t r a t e d  i n  F igure"7  , and t h e  corresponding t w i l i g h t  zen i th  and horizon rad- 

iances  presented in  Figures , respec t ive ly .  The de tec t ion  of minor 
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cons t i t uen t s  w i l l  be achieved by performing both zeni th  and horizon s p e c t r a l  

scans (11 2000-3OOOa) throughout t w i l i g h t  observation periods. It can be 

seen from Figure? t h a t  a s i g n i f i c a n t l y  enhanced c m  column count i s  in- 

volved along t h e  path ACD. 

2 

On t h i s  bas i s ,  t h e  presence of minor cons t i t uen t s  

along t h i s  path would s e n s i t i v e l y  a f f e c t  t h e  observed zeni th  and horizon 

radiances as a func t ion  of both s o l a r  depression angle  and wavelength. The 

app l i ca t ion  of appropr ia te  a n a l y t i c  techniques should r e s u l t  i n  t h e  ex t r ac t ion  

of t h e h o r p t i o n  c h a r a c t e r i s t i c s  of t h e  lower atmosphere and, under c e r t a i n  

conditions, s p e c i f i c  cons t i t uen t s  may be i d e n t i f i a b l e .  F ina l ly ,  i f  t h e  major 

absorption cont r ibu t ion  over a given s p e c t r a l  i n t e r v a l  can be ascr ibed  t o  

a s p e c i f i c  cons t i t uen t  (Le. NO, CO, OH, CN, etc.), then it might be poss ib le  

t o  obta in  t h e  scale he ight  or number dens i ty -a l t i t ude  p r o f i l e  for t h a t  species.  

I n  any event, it is  evident t h a t  t h e  highly s e n s i t i v e  absorption experiment 

described above can serve t o  e s t a b l i s h  new i d e n t i f i c a t i o n s ,  upper l i m i t  con- 

t e n t  values and d i s t r i b u t i o n s  of trace cons t i t uen t s  r e s iden t  i n  t h e  lower 

Martian atmosphere. 

(5) The Detection and Characterization of Dust i n  t h e  
Martian Atmosphere 

There appears t o  be l i t t l e  question regarding t h e  

occasional ex is tence  of dus t  and/or haze layers  i n  t h e  lower Martian atrnos- 

pher e. (7!42 Physical, photographic and polarometric measurements have indicated 

t h a t  several cloud forms e x i s t  including white,clouds, b lue  clouds, "yellow 

veils", and "v io le t  hazes". The white clouds probably involve a par t ic le  

s i z e  range between 1 t o  60 microns and are believed t o  cons i s t  of e i t h e r  ice 

or s o l i d  GO2. It i s  believed t h a t  t h e i r  formation i s  favored i n  low 
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temperature regions s ince  they have o f t en  been observed a t  t h e  sun r i se  and 

sunset limbs of the planet .  The blue clouds, character ized probably by a 

p a r t i c l e  s i z e  range between 0.1 to  1 micron have been compared by some t o  

terrestrial noc t i lucent  clouds, while o thers  f e e l  they represent an  accumu- 

l a t i o n  of micrometeorites suspended i n  the  lower Martian atmosphere. The 

r e l a t i v e l y  r a r e l y  observed low-level yellow clouds probably cons i s t  of white 

dese r t  dust  blown about by Martian sur face  winds. I n  summary, i t  appears t h a t  

not only is the  presence of dust  i n  t h e  Martian atmosphere confirmed, but 

t h a t  t h e  p a r t i c l e  diameters appear t o  range from 0.1 t o  60 microns. 

The general  experimental configurat ion and the  pro- 

cedures appl ied here in  should c lose ly  resemble those described i n  the  previous 

sec t ion  concerning de tec t ion  of t r a c e  molecular cons t i tuents  by absorpt ion 

d i f f e r e n t i a t i o n  over t he  s p e c t r a l  region XX 2000-80008. However, t he  con- 

duct of t h e  observations should not be confined t o  tw i l igh t  s ince  i t  ce r t a in ly  

appears f e a s i b l e  t o  search f o r  p a r t i c u l a t e  s c a t t e r i n g  from dust  l a y e r s  under 

f u l l  s o l a r  i l luminated daytime conditions a s  w e l l  as during t i m e s  of Phobos 

i l luminat ion on t h e  n ight  s i d e  of t he  planet.  

For t h e  ranges of wavelengths and p a r t i c l e  diameters 

involved, it appears that  both Rayleigh and M i e  s c a t t e r i n g  cont r ibu te  to t he  

observed s igna ls ,  so that performance of the  spectral scanning procedure over 

t he  spec i f ied  geometry should r e s u l t  i n  confirmation of the presence or ab- 

scence of dus t  or haze layers  i n  t h e  lower Martian atmosphere. Additionally,  

appl ica t ion  of appropriate  a n a l y t i c  procedures t o  representa t ive  s p e c t r a l  

scans under the v a r i e t y  of conditions encountered during the experiment may 

produce data  re levant  t o  the  s i z e  d i s t r ibu t ion ,  nature,  and o ther  physical  
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c h a r a c t e r i s t i c s  of t h e  p a r t i c u l a t e  matter. Twilight observations could be 

employed f o r  example, t o  l oca t e  t h e  tops  of layers.  While t h i s  lat ter in-  

formation is of g r e a t  i n t e r e s t  i n t r i n s i c a l l y ,  i t  could a l s o  be appl ied  t o  

t h e  ana lys i s  of t h e  o ther  proposed tw i l igh t  measurement experiments discussed 

previously. 

With respec t  t o  nighttime measurements, t he  white 

clouds ( s i z e  d i s t r i b u t i o n  from 1 t o  60 microns) appear t o  form i n  t h e  v i c i n i t y  

of t h e  planetary sun r i se  and sunset limbs, so t h a t  such clouds may e x i s t  

throughout t h e  e n t i r e  dark s i d e  of t he  planet owing t o  the  r e l a t i v e l y  low 

ambient temperature conditions. This p o s s i b i l i t y  could be v e r i f i e d  simply 

by observing the  presence of M i e  s c a t t e r i n g  ( f a r  more e f f i c i e n t  than Rayleigh 

sca t t e r ing )  from t h e  p a r t i c l e s  i l luminated by Phobos during i ts  o r b i t  i n t o  

and around t h e  dark s i d e  of t he  planet.  

preliminary ca l cu la t ions  ind ica t e  t h a t  t h e  r e l a t i v e l y  low s i g n a l  i n t e n s i t i e s  

involved would probably r e q u i r e  t h a t  t h e  s p e c t r a l r e s o l u t i o n  of t h e  instrument 

be increased t o  about 1002. 

For t h i s  p a r t i c u l a r  case, however, 

F ina l ly ,  t h e  employment of a po la r i za t ion  d i s c  should 

be considered i n  order t o  acqui re  pe r t inen t  information t o  f u r t h e r  character-  

i z e  t h e  s i ze ,  d i s t r i b u t i o n ,  and physical na ture  of t h e  observed p a r t i c l e s .  

However, i t  should be noted t h a t  employment of such a po la r i za t ion  d i s c  gen- 

e r a l l y  involves s i g n a l  i n t e n s i t y  lo s ses  as w e l l  as imposing a s h o r t  wavelength 

l imi t a t ion  on t h e  observations. 

d. Instrumentation 

The discussions presented i n  t h e  previous sec t ions  haye 

i d e n t i f i e d  t h e  general  opera t iona l  requirements and cons t r a in t s  of t h e  proposed 
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instrumentation system. Among t h e  s p e c i f i c  requirements are included: (a) 

s p e c t r a l  scanning capab i l i t y  t o  cover both the  u l t r a v i o l e t  and v i s i b l e  regions 

from AX 2000-80002; (b) a s p e c t r a l  r e so lu t ion  of approximately 18 would be 

des i r ab le ;  (c) a highly ruggedized instrument having minimum moving p a r t s  

due t o  the na tu re  of t he  mission; (d) s e n s i t i v i t y  such t h a t  br ightness  values 

of between 1 t o  10 R/a can be observed over t h e  u l t r a v i o l e t  s p e c t r a l  region; 

and f i n a l l y  (e) employment of a double-pass configuration i n  order t o  min- 

imize s i g n i f i c a n t  instrumental  scatter problems which may be encountered i n  

t h e  adopted experimental mode. 

I n  t h i s  regard, under Contract NAS5-9472 t h e  GCA 

Technology Division designed a double-pass W scanning spectrometer f o r  

operation i n  a sa te l l i t e  envdronment f o r  t h e  purpose of measuring t h e  content 

and d i s t r i b u t i o n  of ozone i n  t h e  e a r t h  atmosphere. 

t h i s  la t ter  instrument shown schematically i n  Figure 

l y  t o  t h e  proposed experimental requirements enumerated above. The genera l  

f ea tu re s  and pe r t inen t  opera t iona l  aspec ts  of t h e  instrument are described 

e Is ewher e. 

The s a l i e n t  f ea tu re s  of 

can be applied d i r e c t -  

(48 

Order of magnitude ca l cu la t ions  ind ica t e  t h a t  t h e  employ- 

ment of a 5 x 5-cm g ra t ing  with 2400 l i n e s / m  and a 50-cm f o c a l  length would 

r e s u l t  i n  t h e  achievement of a 18 r e so lu t ion  wi th  a s l i t -w id th  of about 25 

microns ( i f  t h e  g ra t ing  i s  set f o r  an  angle of incidence of 45 degrees as 

shown i n  t h e  f igure) .  

photon f l u x  a t  t h e  e x i t  s l i t  w i l l  be about 

These ca l cu la t ions  a l s o  i n d i c a t e  t h a t  the r e s u l t a n t  

0 photons/second f o r  an emission 

Using these  parameters, f u r t h e r  ana lys i s  i nd ica t e s  t h a t  t h e  R/a. 
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OiC221-20E 

Figure 18. Schematic diagram of proposed instrument. 
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e n t i r e  s p e c t r a l  i n t e r v a l  from 2000-80008 would be spread over a length of about 

15 c m  across  t h e  f o c a l  plane as  shown i n  Figure 1 

It should be noted t h a t  t h e  o p t i c a l  components s h m  i n  

are schematically ind ica ted  by lenses;  however, i n  p r a c t i c e  mirrors 

would be involved. 

vary t h e i r  pos i t i ons  during scanning operations so t h a t  t h e  f a b r i c a t i o n  of a 

ruggedized vers ion  of t h i s  design should c o n s t i t u t e  a r e l a t i v e l y  s t r a i g h t -  

forward task. 

There is  no requirement f o r  t h e  o p t i c a l  components t o  

Much of t h e  material generated under t h i s  study has been 

u t i l i z e d  i n  t h e  preparation of a suggested experiment f o r  t h e  forthcoming Mars 

Lander Program. 
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111. MISCELLANEOUS 

This s ec t ion  contains b r i e f  summaries of t h e  s c i e n t i f i c  material gen- 

e ra t ed  under t h e  present program and presented a t  s c i e n t i f i c  and/or profess iona l  

meetings. In  addi t ion ,  t h e r e  i s  included o ther  miscellaneous top ic s  of i n t e r e s t  

i n  t h e  performance of t h e  cur ren t  cont rac t  committments. 

During t h e  cur ren t  repor t ing  period Dr.  James A. R. Samson attended t h e  

21st Annual Gaseous Elec t ronic  Conference held a t  t h e  University of Boulder, 

Boulder, Colorado, 16-18 October 1968. D r .  Samson presented a paper e n t i t l e d  

!'Higher Ioniza t ion  Po ten t i a l s  of Molecules Determined by Photoelectron 

Spectroscopy". 

t he re  is an  acce le ra t ing  a c t i v i t y  i n  t h e  new f i e l d  of e l ec t ron  spectroscopy. 

H i s to r i ca l ly ,  t h i s  conference dea ls  with photon-atom in t e rac t ion ,  atom-atom 

in t e rac t ions ,  ion-molecule r eac t ions  and electron-molecule in t e rac t ions .  Many 

of t hese  a reas  are of d i r e c t  i n t e r e s t  t o  t h e  performance of t h e  cur ren t  con- 

tract committments. Of p a r t i c u l a r  i n t e r e s t  t o  some cur ren t  problems i n  photo- 

e lec t ron  spectroscopy w a s  a paper e n t i t l e d  "Configuration Mixing of Continuum 

Sta tes"  presented by A. J. Mendez. This t h e o r e t i c a l  paper has  been of s i g -  

n i f i c a n t  importance i n  def in ing  f u t u r e  pe r t inen t  experimental measurements. 

For example, i t  w a s  pointed out t h a t  i t  would be of s i g n i f i c a n t  importance t o  

measure t h e  c o e f f i c i e n t s  A and B f o r  t h e  angular d i s t r i b u t i o n  of photoelectrons 

i n  wavelength regions wherein au to- ioniza t ion  and overlapping continuum states 

occur. With t h e  experimental values ava i lab le ,  t he  theo re t i c i an  could then 

determine t h e  proper wave functions of the states involved. 

This paper was received with considerable i n t e r e s t  s ince  

During t h e  conference l o c a l  v i s i t s  w e r e  made t o  NCAR and ESSA. 
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E. Ferguson (ESSA) demonstrated laboratory evidence f o r  t he  reac t ion  

H e  + N2 + NZ 4- hv (X 20002). This was of spec ia l  i n t e r e s t  t o  our laboratory 

e f f o r t ,  s ince  GCA has pceviously observed "fluorescence" i n  H e  a t  wavelengths 

+ 

shor t e r  than those corresponding t o  the  ion iza t ion  po ten t i a l .  On the  bas i s  

of Ferguson's da ta  it would appear then t h a t  these  emissions could have been 

due t o  N impuri t ies  i n  the  gas sample. 2 
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IV. QUARTERLY PROGRESS REPORT FOR HOURS WORKED I N  THE PERIOD 1 SEPTEMBER 1p68 
THROUGH 30 NOVEMBER 1968. 

I n  compliance wi th  t h e  requirements of t h e  sub jec t  cont rac t ,  t h e  following 

is  a n  in tegra ted  t abu la t ion  of t o t a l  hours worked by labor category and grade. 

Labor Category Labor Grade Tota l  Hours 

*Junior Technician 

Wechnic i a n  
Experimenta 1 Machinist 

*Senior Technician 
Senior Experimental Machinist 

*Junior S c i e n t i s t  
Junior Engineer 

"Gc i en  t i s  t 
Engineer 

Senior S c i e n t i s t  
Senior Engineer 

S ta f f  S c i e n t i s t  

Group S c i e n t i s t  

*and o ther  equivalent ca tegor ies  

2 

3 

4 

5 

6 

7 

8 

9 

10 

18 2 

178 

332 

0 

6 0  

6 4 1  

124 

73 

1,240 

Quarterly Total. . . . . . . . 2,830 
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